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The Large Hadron Collider

e Geneva, Switzerland
' POINT 4

7 -
SECTOR 45 \LL- “ ,romrs

R -
CMS  SECTOR 56 "G I I
\\-}‘ -

( '
! SECTOR s , I
POINT 8

LHCb

SHO

School of Statistics

Deep Learning at Colliders, SOS 2021, J-R Vlimant




Colliding Hadrons

Beam of partons

Radiation from incoming partons
Primary hard scatter

Radiation from outgoing partons
Typical proton-proton Hadronization

collision

Probing fundamental laws of physics as large spectrum
of particles (known and unknown) can be produced

SHO

School of Statistics

Deep Learning at Colliders, SOS 2021, J-R Vlimant



The Standard Model
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We can predict most of the observations
We can use a large amount of simulation
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Size Of The Challenge

¢ 7 TeV CMS measurement (L < 5.0 fb™)

¢ 8 TeV CMS measurement (L < 19.6 fb™)
— 7 TeV Theory prediction

I

— 8 TeV Theory prediction
Z CMS 95%CL limit

Production Cross Section, o [pb]
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All results at: http://cern.ch/go/pNj7 Th. Ac,, in exp. Ac

Low probability of producing exotic and interesting signals.
Observe rare events from a large amount of data.
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Large Hadron Collider
40 MHz of collision

1PB/s

CMS Detector

HEP Data Pipeline

CERN Tier-0/Tier-1
Tape Storage
200PB total

R

CMS L1 & High-
Level Triggers
50k cores, 1kHz

LHC Computing Grid
200k cores pledge to
CMS over ~100 sites

CERN Tier-0
Computing Center
20k cores
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LHC Grid Rare Signal
Remote Access Measurement
to 100PB of data ~1 out of 106
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Event Triggering

Select what is important to keep for analysis.
Ultra fast decision in hardware and software.

1 KHz

1 MB/event
—

Offline

40 MHz 100 KHz

Reconstruction(s) of the event under limited latency.
Better resolution help lowering background trigger rates.
Approximate deep learning surrogates can help.
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Reconstructing Collisions
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Event Processing

From digital signal, to local hits, to a sequence of objects, and high-level features.
Complex and computing intensive tasks.
SO
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Simulating Collisions

4 )
Madgraph, Event Generator: compute predictions of the standard models to
Pythia, several orders of expansion in coupling constants (LO, NLO,
Sherpa, ... NNLO, ...) using proton density functions.

- J

4 e . . )
Pythia, ... Hadronization: phenomenological model of the evolution of

hadrons under the effect of QCD.

\_ J
4 )
Material simulator: transports all particles throughout meters of

GEANT 4, detector, using high resolution geometrical description of the
GEANT V materials.
\_ J
- _ , )
Electronic emulator: converts simulated energy deposits In
Homegrown sensitive material, into the expected electronic signal, including
software noise from the detector.
- Y,

Non-differentiable, computing intensive sequence of complex simulators
of the signal expected from the detectors.
Deep Learning at Colliders, SOS 2021, J-R Vlimant

School fStatlstlcs




Annual CPU Consumption [MHS06]

The Computing Cost of Science
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Ever growing needs for computing resource
Slowdown of classical architecture
Growth of GPU architecture
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https://indico.cern.ch/event/822126/contributions/3500169/

Take home message :

Measure rare and exoftic processes from orders
of magnitude larger backgrounds.

The Standard Model predicts with precision
what to expect from many processes.

Reconstruct, identify and reject large amount of
event within resource constraints.
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Motivations for Using
Machine Learning
In High Energy Physics

and elsewhere ...
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Overview

Reinforcement Learning (cherry)

— The machine predicts a scalar
reward given once in a while.

— A few bits for some samples

Supervised Learning (icing)

— The machine predicts a category
or a few numbers for each input

— 10-10,000 bits per sample

Unsupervised Learning (cake)

— The machine predicts any part

of its input for any observed
part.

— Predicts future frames in videos
— Millions of bits per sample

Deep Learning at Colliders, SOS 2021, J-R Vlimant
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Supervised Learning

- Given a dataset of samples, a subset of features is qualified as
target, and the rest as input

- Find a mapping from input to target

- The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

A

dataset= {(x;, y;)} %
find function f s.t. f(x,)=y,

g0

Temperature
80

70

- Finite set of target values :
> Classification

- Target is a continuous variable :
> Regression ; o

60

16
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Unsupervised Learning

- Given a dataset of samples, but there is no subset of feature
that one would like to predict

- Find mapping of the samples to a lower dimension manifold

- The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

dataset={(x;)}

find f st f(x)=p, -

- Manifold is a finite set
> Clusterization 0
- Manifold is a lower dimension manifold :
> Dimensionality reduction,
density estimator

-20
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Reinforcement Learning

- Given an environment with multiple states, given a
reward upon action being taken over a state

- Find an action policy to drive the environment toward
maximum cumulative reward

St+ 1= EnV(St’ at)
r.= Rew(s,,a,)

_
T
M(als)= P(A=alS=s)
find T s.t. z r, IS maximum
4
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Machine Learning in Industry

MACHINE INTELLIGENCE 3.0

Deep Learning Everywhere

oA

Rapidly Accelerating Use of Deep Learning at Google

Used across products:
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DSSTNE J. AzureML
DMTK Spark™ paddlePaddle WEKA
INDUSTRIES CONT'D
MATERIALS RETAIL FINANCE
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Prominent skill in industry nowadays.
Lots of data, lots of applications, lots
of potential use cases, lots of money.
Knowing machine learning can open
significantly career horizons.
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Learning to Control

Rollout policy SL policy network RL policy network Value network Policy network Value network

pu//) (a | S) Vo (SI)
*

MIOMIBU [BINBN

eleQ

Learning to Walk via Deep Reinforcement Learning

Human expert positions Self-play positions

Mastering the game of Go with deep neural networks and tree search,

Modern machine learning boosts control technologies.
Al, gaming, robotic, self-driving vehicle, etc.

Deep Learning at Colliders, SOS 2021, J-R Vlimant S@S G
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https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103

Operation Vectorization

] ] Wll O
ey i —_—
) Iy )
L2 | 2 07
[ Wi3

ANN = matrix operations = parallelizable

1 . (Wi X i) + (wy X ip)
W12 ' [zll = l(WuX i) + (Wy, X 13)
_ ° (W13x il) Ll ( X iZ)_

Computation of prediction from artificial neural network model
can be vectorized to a large extend.

‘ O u
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Hyper-Fast Prediction

Keras
TensorFlow

PyTorch _
3 v Co-processing kernel

compressed
model — HLS . —>
conversion Custom firmware
design

Usual machine learning

software workflow ‘[f
tune confi_gurotion
precision
reuse/pipeline

Synthesizing FPGA firmware from trained ANN

J. Duarte et al.

Artificial neural network model can be
executed efficiently on FPGA, GPU, TPU, ...

‘ O 2
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Low Power Prediction

Best Results: Single View

x-view conv1pooll conv2| pool2 conv3 | pool3 conv4|poold| fc1 drop fc2 drop fc3 AR
(127x50) (8x3) (2x1) (7x3) | (2x1) (6x3) | (2x1) (6x3) [(2x1)| (196) out (98) out (11)

Convolutional Neural Network Result: ~80.42%
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0

* 90 neurons, 86 synapses

« Estimated energy for a single

classification for meFBANNA
implementatio

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017. ;QAK RIDGE

tional Laboratory

Slide C. Schuman

Neuromorphic hardware dedicated to spiking neural networks
Low power consumption by design
SHO
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https://indico.fnal.gov/event/13497/contribution/0

Physics Knowledge

Learned Observables

0.6
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EFN2: Quark vs. Gluon

PyTHIA 8.230, /s = 14 TeV
R = 0.4, pr € [500,550] GeV

e  Quark
= Gluon

0.0 1
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Oy

Closed-Form Observables

0.6 EFN5: Quark vs. Gluon
PyTHIA 8.230, /s = 14 TeV
0.5 - R =0.4, pr € [500,550] GeV
0.4 1
0.3 - e  Quark
= Gluon
0.2 1
0.1 -
0.0 - % i ® ewwemo
00 01 02 03 04 05 06 0.7

P. Komiske, E. Metodiev, J. Thaler,

B

Machine Learning can help understand Physics.

Deep Learning at Colliders, SOS 2021, J-R Vlimant

1.00
0.86

- 0.71

- 0.57 qu

3
- 0.43

- 0.29

0.14

0.00

s

School of Statistics

24


https://arxiv.org/abs/1810.05165

Use Physics

a Data b DeltaGN c OGN/HOGN d fq,:0DE’s time derivatives

____________

(4, P)n (@, P)n At Cpo & b ..
GNy \ At e s OGN
OGN’s f::
‘, | L/
Physics (Aq, AP)TEID Integrator (Qa P)z—l’ GNvy —I’ (q, P)z
+ £ HOGNs fo5™

RN ’ mﬂm ' mﬁ? (@,P)i— GN, — Hox — (BHGN,_f’”GN)\i. (4, )
(q, P)n+1 ?\O (4, P)n+1 (Q, P)n+1 ! op oq )

_________________________________

Rollout trajectories per model
Ground truth True Ham. DeltaGN OGN HOGN

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia

Let the model include Physics principles to master convergence

S H O
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https://arxiv.org/abs/1909.12790

Learning from Complexity

55 - -
27
13 13 13

N
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IN X ~ T = 13 & 1 13 3 — - 13 dense dense
- 27 P 3 -
55 384 384 256
256 X 4096
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- Stride\| o | Po°ling pooling
of 4
L. AR Numerical Data-driven
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" o

cock
9[qe) Suruurp

210)S A190013

P
3.
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Fc8: Object Classes

Conv 1: Edge+Blob Conv 3: Texture Conv 3: Object Parts

Machine learning model can extract information from complex dataset.

More classical algorithm counter part may
take years of development.
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Role of Al. accelerator control, data acquisition,
event triggering, anomaly detection, new physics
scouting, event reconstruction, event generation,
detector simulation, LHC grid control, analytics, signal
extraction, likelihood free inference, background
rejection, new physics searches, ...

LHC Computing Grid
200k cores pledge to
CMS over ~100 sites

CMS preliminary
T T

* Data Vs=7TeV:L= 51f"
[1 m, =126 GeV Vs=8TeV:L=196f"
= zv,zz
B z+x

Events / 3 GeV

N I
CERN Tier-0/Tier-1

i | “”Ill-‘ﬂ-»!,!!,‘ 1 I
100 200 400 800

..................

: m,, [GeV]
Tape Storage LHC Grid Rare Signal
200PB total Remote Access Measurement
to 100PB of data ~1 out of 106
= CERN Tier-0
Computing Center
== 20k cores

Large Hadron Collider

40 MHz of collision CMS L1 & High-

Level Triggers
50k cores, 1kHz

| e > Up to date listing of references:
CMS Detector

1PB/s

O 2
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https://github.com/iml-wg/HEPML-LivingReview

Reconstruction

Mostly pattern recognition tasks with regressions and classifications
Development on multiple tasks:

* Local energy reconstruction

* Jet reconstruction

* Particle (flow) reconstruction

 Tracking

* Vertexing

Composite reconstruction and end-2-end approaches.

Graph neural networks are emerging as overarching solutions for reconstruction tasks

[
¢ 28
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Generative Models in HEP

Enormous potential gain in computing performance (x thousands)

Extensive R&D effort on-going
* Better PDF
 Faster phase space integration
« Matrix element surrogates
 Particle shower energy deposit simulation
 Analysis-level sample production
* Learning the detector transfer function
» Reconstructed-particle-level fast simulation

Extension of such models
« Unfolding mechanism
* Anomaly detection
* Background subtraction

‘F SR
5 |\ el
P |

L ,-.: \\
el s T
.-.¥ “"”H 1\‘

e
5o v»f\»xz«M,NY\l.\H ﬂpﬁ#

- regression network

- learn amplitude or K factor

- S. Badger, J. Bullock [2002.07516)
- J. Bendavid [1707.00028]

\
Wevent = f(X]_, Q2)f(X2, Qz) X M(Xl,Xz, P1,... Pn) X J(pi(r))_l

/ 10!
e niform
L 10 VEGAS
17 Gev g
L ERURE
7 1

- NNPDF since 2002(!)

- genetic algorithm . ) .
- n3fit: determ. gradient descent ~lsamefficient phase space/mapping

- S. Carrazza, J. Cruz-Martinez (= w=1)

[1907.05075] - normalizing flow
- Gao et al. [2001.10028]

- Bothmann et al. [2001.05478]

Diagram A. Butter

Generative adversarial network (GAN),Variational Auto-Encoder (VAE) and

hybrid solutions taking the best of both methods

Deep Learning at Colliders, SOS 2021, J-R Vlimant S
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Taking Control of Apparatus

Multiple components of HEP data pipe-line can be operated with Al
 Accelerators
* Detectors
* DAQ/trigger
* Internet networking
* Data management
« Computing facilities

Reinforcement learning for learning policies 1s challenging to put in
practice (environment simulation / lots of data required, ...).
Alternative approaches using supervised learning.

Potential gain in operation cost, and utilization efficiency.

Deep Learning at Colliders, SOS 2021, J-R Vlimant S
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Possible Utilizations

Accuracy Speed

Interpretable

> Fast surrogate models (trigger, simulation, etc) ; even better if more accurate.
> More accurate than existing algorithms (tagging, regression, etc) ; even better if faster.
> Model performing otherwise impossible tasks (operations, etc)

‘ : 31
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Growing Literature

Date of paper

1972 2021

Community-based up to date listing of references

Deep Learning at Colliders, SOS 2021, J-R Vlimant S@ S (Yll
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https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature?q=machine%20learning%20or%20deep%20learning

Take home message :

Machine Learning is a widely recognized and
used technology in industry

Deep Learning has the potential of helping
Science to make progress

Neural Networks could help with the computing
requirements of Science

Wide range of potential applications

Deep Learning at Colliders, SOS 2021, J-R Vlimant S o S
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Deep Learning
iIn High Energy Physics

The 10 miles view.
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Producing the Data

T W e Machine learning can be used to
I tune devices, control beams,
| (=, / perform analysis on accelerator
parameters, etc.

compared distributions parameter
Detected phase space
0.04

» Already successfully deployed
on accelerator facilities.

2 |=Setup
5 —Target 0.02

(]
0
-0.02

-0.04

e More promising R&D to
increase beam time.

0.04

0.02

AE (GeV)

A. Scheinker, C. Emma, A.L. Edelen, S. Gessner

Opportunities in Machine Learning for Particle Accelerators

Machine learning for design optimization of storage ring nonlinear dynamics

Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report
Machine learning for beam dynamics studies at the CERN Large Hadron Collider

Deep Learning at Colliders, SOS 2021, J-R Vlimant
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https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461

Acquiring Data

low dimensional
representation

= - .
» zx\/:*l» - Decoder ‘

1
NE

- Y e Machine learning since long
deployed in the trigger for

selected signatures.

€

 Further potential for background

----- 1k e\./ts/month e

10° 0 \ . .
el N N Y = vl Mix trigger rate reduction.
10-2 Y, o L 1 A-dt

=
o
o

[ h*->tv

1 h*->1v
1 LQ

* Emerging opportunity for
triggering on unknown
signatures.

=
o

Probability
Probability
=
o
I

e More promising R&D and
experiment adoption.

LosSreco Dkt

Use of variational auto-encoders directly on data to marginalize outlier
events, for anomalous event hotline operation.

@ 36
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https://doi.org/10.1007/JHEP05(2019)036
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Compressing Data
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HECFrac

1.0

B Input
Output
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Rich literature on data
compression of image with
neural network.

Make use of abstract semantic
space for image compression.

Image compression can suffer
some loss of resolution.

Saving on disk/tape cost.
Potential 1n scouting data
analysis.

R&D needed to reach the
necessary level of fidelity.
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http://lup.lub.lu.se/student-papers/record/9004751

Cleaning Data

Fully connected
.-
Fully connected

= b\ oo e :_LHé;D  Data quality 1s a person power
e @* @ intensive task, and crucial for
| 22 ol swift delivery of Physics
foxtzinpt 4@16x121eature i o ;_;,5 — 46x12 output . . .
Ao | mors e Machine learning can help with
;"T B % 144 hidden units ' nuni 144 hidden units automation.
o Frof L L .
i 50 et : e Learning from operators,
w Zosl o reducing workload.
...................... L 0.4 - SNN, AUC: 0.993

Variance, AUC: 0.977 |

02 oy * Continued R&D and experiment
7S adoption.
0.00 0.05 0.10 0.15 0.20 0.25

Fall-out (1-TNR)

Channel

A.A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth

Towards automation of data quality system for CERN CMS experiment
LHCb data quality monitoring

Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider
Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment

S ONE:

School of Statistics
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https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1

machine

. ® 0
Logging ¢ o

S

Systems,
components
services

===

Visualization / Monitoring

Analytics
Bl

Data sources

Data Providers

Actions/
alerts

Actions

i ® s
O ofs B2

Managing Data

( Cache \

System
{ Statd Request Client
Addition \
Agent /' - P cache
/ Memory

[ Reward

ﬁ_/

|Cache Type’Through put

Cost’Read on hit ratio Band sat.|CPU Eﬂ'.‘

|SCDL y 79.43%|50.68% | 21.22%|  58.94%|  58.75%|
|LFU y 65.01%|104.73%| 33.29%| 51.00%| 60.92%)|
|Size Big y 49.02%|111.73%| 28.55%|  54.40%|  60.41%|
|LRU y 47.15%|112.84% | 27.64%|  54.93%|  59.90%|
|Size Small | 46.71%|113.01%| 27.39%|  55.01%|  59.73%)|

Caching suggestions using Reinforcement Learning

, In proceedings

Deep Learning at Colliders, SOS 2021, J-R Vlimant

The LHC-grid 1s key to success
of the LHC experiments.

Complex ecosystem with
dedicated operation teams.

Person power demanding, and
inefficient in some corner of the

phase space.

Potential for Al-aided operation.

Lots of modeling and control

challenges.

R&D to increase operation

efficiency.

SO
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http://cds.cern.ch/record/2709338/
https://operational-intelligence.web.cern.ch
https://lod2020.icas.xyz/program/

Reconstructing Data

,, Set—Set, | Set—ledges _ , , * Event reconstruction is pattern
oo F 6 0s" |, o 0o Fo_ N GNN applied to charged particle tracking .-
R I RN _)-\,}X/;{ recognition to a large extend.
R A Advanced machine learning
o SctTgrzal)l1° Sct—>3;cdgc§0 | J | L, | teChniqueS can help
oo FLE o%ﬁ" o o e Fmm ol S @ | e DM T
- Q/}V s |t T e " N hieomh | Neingomh Bt o Learn from the simulation, and/or
o | e © o o o N\
| data.
r_{.scl — graph|_, —\'.,. . .
; g A e Learn from existing “slow
g:ﬁ ngi, A 4 reconstruction” or simulation
i i ground truth.
nxd, nxd, nxnxd, i i ;‘: . .
« Automatically adapt algorithm to
Learning graphs from sets, applied to vertexing 5 new detector desi on.
!
; » Image base methods evolving
7
/ towards graph-based methods.

Accelerating R&D to exploit full

potential.
SOSE

School of Statistics
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https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149

Data

DLLx, P, ETA,
nTracks

Preprocessing

(Normal)

‘ Quantile Transformer ‘

DLLx, P, ETA,
nTracks

nTracks

P, ETA, , ,

Latent space

Normal, 64

Concatenate

Dense, 128, Rel.U

Dense, 128, RelL.U
x10

Dense, 128, ReLU

Dense, 256, Linear

Gener

rator

Dense, 128, RelL.U

Dense, 128, RelL.U
x10

Dense, 128, ReLU

LP Cramér GAN Loss

o o &m- & &5 & o o
§ 8 8 8 2 ¢ & ¢ 8

[ h J =3 2 =3
g L 2 & 8 7 8 a 8

Simulating Data

50
RichDLLk

LHCb preliminary

LHCb preliminary

LHCb preliminary

0.020

(((((((

50
RichDLLk

111111

RichDLLk

Generative Adversarial Networks for LHCb Fast Simulation

Much more relevant work going on.

RichDLLk

Deep Learning at Colliders, SOS 2021, J-R Vlimant

Fully detailed simulation 1s
computing intensive.

Fast and approximate simulators
already 1n operation.

Applicable at many levels :
sampling, generator, detector
model, analysis variable, etc

Generative models can provide
multiple 1000x speed-up.

Careful study of statistical power
of learned models over training
samples.

Many R&D, experiment adoption
starting.

SO
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https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762

Calibrating Data

(13 TeV) (13 TeV) (13 TeV)
o ot ey ] (s smonramnay |1 " T oo ey | o
e | st * Energy regression 1s the most
izt { ot it S g o 3 e o obvious use case.
S E Ty i | e  Learning calibrating models from
cosr e cos T simulation and data.
’]‘0 EO‘ .AT.I..UIA...I“.A.I...‘.l...“lAA“T‘.A. lg EO‘ A.‘ n .-l ..., ..l PR P ..‘ l-. " A-A g ﬁo‘ :..l‘...?h:.IT“A-l.....l““l.‘“..l“-..l..“l.
ST ey T e Parametrization of scale factors
$ .| oms simuation using neural networks.
| —— * Reducing data/simulation
b Ak dependency using domain
sy adaptation.
s
i  Continued R&D
001 | EJC;):I:‘;'(;:‘.;(;: .‘810 11106 ‘ 156 %4110 ‘?é:(;:

m; (GeV)

A deep neural network for simultaneous estimation of b jet energy and resolution

Much more relevant work going on.
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Deep Learning at Colliders, SOS 2021, J-R Vlimant S@ S s

School of Statistics



https://arxiv.org/abs/1912.06046
https://iml-wg.github.io/HEPML-LivingReview/

—

-

Rejection (1/False Positive Rate)

Analyzing Data

5 . Sigr?alRegion
’ - EEl Background . .
4 .+ Samal | e Machine learning has long

AR | infiltrated analysis for signal/bkg
SRR classification.

i i— * Increasing number of analysis
RS R R N S with more complex DNN.

l0g(pbackgrounda(x|m))

1©

o Signal Region, Shifted Dataset Signal Region, Shifted Dataset ° Appllcatlon tO Slgnal
i —— Supervised —— Supervised . . .
. \ cwola (5vs.8) | 20 CWoLa (5 vs. B categorization, bkg modelling,
i CWola (SRvs. SB) | € CWola (SR vs. SB) . . .
N S — avone S, — ANODE kinematics reconstruction, decay
o Random . .
E product assignment, object
0? O . . .
§ 1dentification, ...
0! = 5
109 e D R — * Breadth of new model agnostic
00 Sign%lefficie(r)\'c‘ty (Trug'gositivg'gate) +0 o0 Sign%lefficie%?y (Trug'gositivg'gate) +0 methOdS fOI’ NP SearCheS.
Use of masked autoregressive density estimator with normalizing flow e Continued R&D and experiment

as model-agnostic signal enhancement mechanism. . . ..
e e adoption initiated.

Much more relevant work going on.
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https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/

Theory Behind the Data

"— « Hypothesis testing 1s the core of
y e wgpin ) — 5(0) — 4 HEP analysis.
smiin el e * Intractable likelithood hinders
m //:\\ it Monte Garlo samping. . with leamed summary staistics with Monts Carlo sampling with nference Gompilation SOlVing the inVerse prOblem.
P /} « Going beyond the standard
‘ \ approach using machine learning

and additional information from
the simulator.

C) posterior d)
Amortized surrogates

Amortized likelihood ratio trained with augmented data

Constraining EFT with ML
* More precise evaluation of the
priors on theory's parameters.

probprog/pyprob

RNN 2 o

May involve probabilistic
programming instrumentation of
HEP simulator.

R&D to bring this in the
experiment.

] 44
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The frontiers of simulation-based inference

simulator C++

y / GEANT



https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013

Take home message :

Rapid growth of machine learning
applications in HEP

(too) Slowly turning proofs of concept into
production

Exciting time ahead exploiting further the
potential of Al

Deep Learning at Colliders, SOS 2021, J-R Vlimant S
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From RAW to High Level Features

A

6 76 Cx
6C FFL>E(
ADC1B3 3p
36 36 E4 EE
97 13 16 FA
1B 68 FF ES8
6A41C1 1A
£8 E4 CD 99
4{A 16 76 C5

m\\ IIIII f ,’,I/I
t

N
\
\\ @ \\\ 'tlrtﬁ*’/l‘

i '
‘ 'r’/u i \\\\:«

E 4 //” W

/ LTI B

t tLHL CERN
e May 25 06:24:04 2010JCEST
ition ‘100&10 078800

B48
Ca\o Jet
.

Calo jet

/" pr=46Gey

PF jet
pT= 69 GeV

GeV

l

Event Processing

¥

From digital signal, to local hits, to a sequence of objects, and high-level features.
Complex and computing mtenswe task that could find a match in ML application.
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Image Representation

[

Jet-Images — Deep learning edition :
10 5 10
= 10 =
100 % 0 %
<) 0o
S g S
107 % 20 i 0y
. g 3
250 <p /GeV <260 GeV, 65 < mass/GeV <95 250 <p,/GeV <260 GeV, 65 < mass/GeV <95 Pythla 8, ﬁ - 13 TeV g o5 :
Pythia 8, W WZ, (5= 13 TeV Pythia 8, W' WZ, 5= 13 TeV , . 10725 10725
s 10 s = ] 10 = 250 <p /GeV <300 GeV, 65 < mass/GeV <95 =3 =
s 8 ES 107 8 T &} 30 S
< 10 & < 0 2 T 107 35 10
z V2 1 3
E 0 , H 5 e 1580 40 40
] - 2 % —— mass 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
% 10° § = ¢’ pixels &' pixels
{ e £ w T Ty 4
o 10:: . '8 AR 10 T T T T T
b 3 Fish & SOFTDROP+N-subjettiness ----------
- .E” 100 sher B MOTHEROFTAGGERS -
" : 05 S Maxout ¥
[Translated] Pseudorapidity () [Translated] Pseudorapidity (n) 8 s ‘1;&" DeeprPToP full
= — Convnet 2 103 L W DEEPTOP minimal ------ _
= s ~
250 < p_/GeV < 260 GeV, 65 < mass/GeV < 95 250 < p_/GeV < 260 GeV, 65 < mass/GeV <95 - Random — \%,
B Ple:B,QCD:ueu‘ |‘s='|':n:=v H :ylhh!,QCDdiicu, |s='l';‘l‘=V B W VS QC D [=} \\Q\
S o s vs S RSN
2 [ = + DA
g - S RN
3 2 50}~ 2, R
Sos £ \ 2102 b
: £
5 - g e
2 L 2 ST
&0 T
0 . 4 B
: - g 10 ¢ RSN
10° Bl 100 L i | i & L 1 T T = m RIS
05 0 05 1 10° 05 0 05 1 10° 8-2 . . . .."’"q;':\
[Translated] Pseudorapidity (n) [Translated] Pseudorapidity () Si | Effici TOp VS QCD %\\\\\‘
ignal Efficiency AN
\
\ 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Signal efficiency eg

- J

Calorimeter signal are image-like.
Projection of reconstructed particle properties onto images possible.
Potential loss of information during projection.
SOSE

School of Statistics
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Sequence Representation

\_

Unrolled RNN

Fully Connected

+
SoftMax
Sdo
| o] | en| | = Z
- T8 (2|2 |E] |2
pT ‘
Merge = [E] [ )
AR

\__ordercdivisdol __/ yet

B-Jet with Recurrent Neural Networks

~

J

\_

N > fv\-mn (e)

7N 7N
AR AN VAN
?/"\ 1 T T

QCD-Aware Recursive Neural Networks for Jet Physics.

7N

J

Somehow arbitrary choice on ordering with sequence representation.
Physics-inspired ordering as inductive bias.

Ordering can be learned too somehow.

Deep Learning at Colliders, SOS 2021, J-R Vlimant
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Graph Representation

@

Jet

Lepton Jet

MET

Hits in tracking detector Objects in an event

Hits in calorimeter detector Object sub-structure in an event

Graph Neural Networks in Particle Physics

Heterogenous data fits well in graph/set representation.

SO =

School of Statistics
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https://arxiv.org/abs/2007.13681

Invariance and Symmetries

| 52
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Dataset Degeneracy

Pre-process the dataset to reduce degeneracy.
Model training improves as the invariance does not have to be learned.

¢ 53
Deep Learning at Colliders, SOS 2021, J-R Vlimant ;@Sé G



https://arxiv.org/abs/2006.04780

Inductive Bias

(._' 1.M \\ ( Particles Observable \

/1 0 -+ 0 Cineo
ki =k |01 . Cong2 0 Oy e bt
. S .0 ; ; / JE—H\
\() 0 --- 1 Cnynso -+ Cna ) T Z5
N,N+2 N.M e 56@;_.@_,@.. FH-
D7 ; -
m"(l;')\ '=/
( /:‘J Lorentz Learning Layer / el b‘_z
oLa i - pr( j) LEgy/P'lFl ””” o
. _) J — '( ') " -' ner article Flow Networl
Wim E(km) Deep set
(d) p )
“‘jm ([jm ) \ j

Out

[
.
In
(

F = W. 9,-6[99?2@ Zf(l’i) °/7ij®?i
. \ J ) J

Embed the symmetry and invariance in the model.
Economy of model parameters.

Lorentz group quivariant networks

SO
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de-correlation
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De-correlation

Most background estimation methods (side-bands, ABCD, parametrized fit, ...)
will require background shape to somehow be independent of analysis
selections/processing (not only when using machine learning BTW).

+40604 ns H

+4Da¢4 LIS H

—
\

QCO Jeis
QCO Jeis

Domain adaptation
Learn to Pivot

m‘)'c,l m\)d

Numerous methods proposed to de-correlate model predictions and
quantities of interest (pt, mass, ... ).
Usually adding a term in the loss to constrain de-correlation.

|
& /A
i1 56
U

|~

v
|
G \\\\;ﬂ/ /j
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https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1611.01046
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CMS Collab.
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Q
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103

. o )
with adversarial nets] 5

102

10%+

10°

e T

o T2,-DDT
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D;-kNN

e Adaboost
© uBoost

DNN+distance correlation
CNN

DNN
DNN+planing
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\
\
\\ )
N o CNN+planing
[ N\ . -== CNN+adversary
\\ == CNN+distance correlation

10?

DISCO: Distance Correlation

Jenson-Shannon Divergence (JSD) as the comparison metric for shaping.
Residual shaping needs to enter systematics uncertainty estimation.
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http://cdsweb.cern.ch/record/2630973
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/2001.05310

Background Estimation

103 * Double DisCo
C A c Single DisCo
5 e Scan with ATLAS features
Q
(o)
oa
©
D B 5102}
o &
(@)
~ S
f— : K
, ABCD closure within 10% :
ABCD + Disco 1| RPV stop search ogrm
1055 02 0.4 06 0.8 1.0

Normalized Signal Contamination (r)

Most popular background estimation method (ABCD), can be optimized
for de-correlation, yielding increased significance.
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https://arxiv.org/abs/2007.14400
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Syst. Estimation and Mitigation

( compute via automatic differentiation \
4 c T N NT N (T )
g Yo | Y1 Yy softmax 8o 30.50 } it
T 5 :
] £X;0 8o i
E Lo |y | - mg f o @ Z §b logL"A U
. SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
.o | o | ' () APPROXIMATION NETWORK STATISTIC LOSS
3 pAX)Z=—0)
B wix1z=0) stochastic gradient update ¢**' = @ + n(t) VU
30HC O WAX)Z= +0) .. .
, ol \_ INFERNO: Inference-Aware Optimisation )
izo. SOV SRS | U SS— -
= : 0.004 . . r v v
B [ [ Background \
1.0}  — my =500
0.5 3 0003 C my =750 |
: ! _ ] 0 © 3 my =1000
X — 06 08 10  -10-05 0.0 05 10 15 20 ; my =1250
f(X) i 0002 C3 my =1500 |
. X1 s
\ Learn to pivot / Slx1,x2,0) s
X2 ;’é 0.001
500 00 00
My [GEV]
\_ Parametrized Learning )

Systematic uncertainties can be propagated the usual ways.
No additional systematic from the model itself.
Methods to mitigate, propagate and optimize against systematic uncertainties.

sOs( -
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Domain in-Dependence

Training region

8Lclass/au_; j ":\ aLclass/aw l Lclass
. “J
Input features 1D convolutions Dense
) o) ) = Dense
Charged PF g g g g — —
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LLP jet tagger

Pmax(LLP | ctg=1mm)
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Gradient reversal on a domain-classifier to mitigate the discrepancies of
classifier output between data and simulation.
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Pmax(LLP | cto=1mm)
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Inference Engines

@ "y CPU \\ “Remote accelerator”
- = * Small models
= - » Small datasets
N T » Useful for design space exploration )
¢ GPU b
m]m)] = * Medium-to-large models, datasets
OO0F * |Image, video processing
N * Application on CUDA or OpenCL )
/ [ TPU \
= = * Matrix computations
g E’l N * Dense vector processing
\_ * No custom TensorFlow operations )
“On-Board accelerator”
¢ T FPGA A
= :D.D = * Large datasets, models
- - = * Compute intensive applications
N * High performance, high perf./cost ratio D

Growing list of deep learning accelerators.
Location of the device is driven by the environment (HLT, Grid, ... ).
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https://arxiv.org/abs/1811.04492
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.14781

Model Compression

Pruning weights

1st iteration

- B B B 58 8 8 2

Retrain m
with L1 ¢ |
2nd jteration

hisaml 2 - hisami

Retrain
with Ls ¢
7th iteration —_—

before pruning

after pruning

pruning

-———
synapses
pruning N
neurons

~

J

[

Ratio Model Accuracy / Baseline Accuracy

-

TensorFlow Keras model

Quantization

Accuracy Resource

requirement constraints

T~

Quantization
configuration

AutoQKeras
optimization
QKeras
model
, Y A A
. QKeras QTools KTuner E
E quantizers  estimates API .
: A: :
AsssssssseennY "sEEEEEEEEEEEEEEEEEEEEEEEEEEEE

1.0 4 — QKeras CPU
= (QKeras FPGA

= = Post-train quant.
1.02 A

1.00 -
0.98
0.96 -
0.94

0.92 4

0.90

1 T T 1
BF BPBHQEQB

Bitwidth

Resource Usage (%)

hls4ml

) Fixed-point translation 9
) Parallelisation

Firmware generation

HLS project

~

50 4 — LUT
—— FF
~— DSP

40 A

30 A

20 A

10 A

0_.

C
B
+0%¢

1 1
4 6 8 10 12 14 16
Bitwidth

BF BP BH QE QB

J

Model inference can be accelerated by reducing

the number and size of operations.
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https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/1804.06913
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Reconstruction - Simulation ~ ldentity

Simulation Analysis Reconstruction
Comparison
- - N

Particles

Track
candidates

its Track

segments

Information

Summable digits

Reconstructed

Digits .
points

>

Rawidata Processing

Simulation aims at predicting the outcome of collisions.
Reconstruction aims at inverting it.
Multiple ways to connect intermediate steps with deep learning.
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Suiting Models

\ [ . . ) » \
detector - Generaton & - -
8 Reconstructon I}
U§ “ OL Prediction é . d
— : L -
glxry,ry) _ | o -—
{xa,7a} d L
» -_ r
m— ' ~—
Lyvp, MSE f----=----- > INN (REEEE LT Lyivp, MsE
§ 2 § 2
glxp,Tp) 15 1.5
: ! {jdsf{l} s 1 T S 6 1 e e
05 05
—
% 700 200 300 400 500 600 b 100 200 300 400 500 600
T S, My
parton - - © aonf
2 B %
e | u.m |
%102 x10"? § ] JF =
: L. i Py
6.01 i 2 jet no ISR i 2 jet no ISR -~ L — P q
T Parton Truth 601 By e Parton Truth - e - -
— 20 P —— Parton INN =— 50 —— Parton ¢INN - 1 e g -
sS40 b Detector Truth (o | i)k o Detector Truth e . vooe . “
3 i — Detector NN | g 40 —— Detector eINN oee -, & "\
3.0 o vio0 . sone I 1
Lli S—
F 20 ¥ 20
e 5 | § 2 g 2
1.0 |
1 Y 10 . 1.5 1.5
0.0 it 0.0 _—mnriees e 3 1 er———————ststtgsiiectted B 4 SN —
- 1.2 . 1.2 8]
e zfs 05 0.5
ZIE10 1210 ﬂl"‘ﬂ\”
08 i [l 08 [ § 204 60 80 100 120 140 160 180 200 Q4 3 Iz N0V W
0 20 10 60 80 100 120 0 20 10 60 80 100 120 4 o
pra, [GeV] Pras |GeV) .
%101 %101 1@ K pL
3.0 2 jet no ISR 3.0 2 jet no ISR
______ Parton Truth ; ====== Parton Truth
= 25 —— Parton INN = 25 —— Parton ¢INN
'1 X N Detector Truth 1 ol 1 Detector Truth —
o —— Detector INN | O —— Detector eINN X G X py
s 1.5 s 15
3= Bl
E 10 “E 1.04
—lo ~le
0.5 0.5 ST q, i
e 4 : e /@, DL DL
0.0 0.0 o5 /@
L 1.2 L 77" \¥
e et W Elo ()
0.8 0.8 o4 A e
70 75 80 85 9 70 75 80 85 90 95 e
My reeo [GeV) Migreeo [GeV) / \ N g /

Learn the parton=>detector function instead of
generating samples from vacuum.
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https://arxiv.org/abs/2010.01835
https://arxiv.org/abs/2006.06685
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Generative adversarial network may help producing samples with
higher statistical power than the one used for training.
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https://arxiv.org/abs/2008.06545

Anomaly Search

‘ () 70
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The Sea Beyond Standard Model

Slide: A. Wulzner

HEP yesterday HEP today

_SUSY, etc.

W boson
“Almost” Simple H+ “Very” Composite H1
Focus on few sharply-defined Huge set of alternatives

alternative models (e.g., the Higgs) Case-by-case optimisation unfeasible

Case-by-case design of optimal test | The right H4 likely not yet formulated
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http://www.weizmann.ac.il/conferences/SRitp/Aug2019/

"One-Sided” Hypothesis Testing

Rigor in calibrating the rate of
anomaly is HEP specific
(Anomaly detection is not).

Some methods can serve as a
hotline: notification of odd
signals.

Some methods can serve Iin
analysis: calibrated rate of
novelty.

Also of great importance in data
quality monitoring/certification.

Individual Approaches

LHC Olympics 2020

3 Unsupervised

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9

Anomalous Jet Identification via Variational Recurrent Neural Network
Anomaly Detection with Density Estimation

BuHuLaSpa: Bump Hunting in Latent Space

GAN-AE and BumpHunter

Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

Latent Dirichlet Allocation

Particle Graph Autoencoders

Regularized Likelihoods

UCluster: Unsupervised Clustering

4 Weakly Supervised

4.1
4.2

4.3
4.4
4.5

CWoLa Hunting

CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

Tag N’ Train

Simulation Assisted Likelihood-free Anomaly Detection

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1
0.2
5.3

5.4

Deep Ensemble Anomaly Detection

Factorized Topic Modeling

QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
Simple Supervised learning with LSTM layers

%
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The Black-box Dilemma

Depth of
thinking

Practical results

Deep learning may yield great improvements.

Having the “best classification performance” is not always sufficient.

Forming an understand of the processes at play is often crucial.
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Learning Observables

Electron classification performance 1:50-
Base Additions (k,3) (AUC) 3122 )
THL 0.945
7HL +Mjet 0956 0.50
7THL S (L) 0.970
THL +Mije. [+.2 (1,1) |17 (1,1) | 0.971 R
7HL . (2, _) 0.970 log,o [EFP Observable]
THL  +Mjet (2,1) | = (2,—)| 0.971 | ckground - 7
CNN 0.972 : L

logio [EFP Observable]

Search in the space of functions using decision ordering.
Simplified to the energy flow polynomial subspace.
Extract set of EFP that matches DNN performance.

Deep Learning at Colliders, SOS 2021, J-R Vlimant - T g [EFP Observable] -



https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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HEP Instruments
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LHCONE L3VPN: A global infrastructure for High Energy Physics data analysis (LHC, Belle II, Pierre Auger Observatory, NOVA)

GTP

usc
¢

10 GbE

1  (6x8FEROLs)

48 x 12 (10/40 GbE)

40 GbE

84x 64 (56 Gbps)

56 Gbps I1B-FDR

40 GbE
36 x 40 GbE

10 GbE

Surface Counting room

FUPCs

—

Timing, Trigger and Control (TTC) front-end distribution system

=0

Detector Front-End Drivers ( FED x ~700 )

New
FEDs

0 |

| Trigger Throttle System (TTS). Fast Merging Module (FMM)

EVM/RUs. 84 PC | |
56 Gbps [B-FOR P

576 Front-End Readout Optical Link (FEROL-PCIx)

185m OM3 Data to Surface ~ (2 x) 576 x 10 GbE links (5.8 Tbs)

400 MBs Input: old FED copper 400 MBs Slink, new FED 4/10 Gbs optical

Patch panels

P50 Mini DAQ

Event Builder 84 x 64 (3.5 Tbs )
& Data Backbone

InfiniBand-FDR CLOS-216 network
(216 external ports)

[
BU,|
e b o = 64 BU-FU

appliances
~ 15000 cores

2] e

=|= 6x40GbE =T = =

b 36 x 40GbE switch [ S| [CES
e e R
48 x 10 GbE FUs| 10 GBs 10

Technical

Data backbone (10/40 GbE) ] Network

BU-FU appliance

-1BU (256 GB RAM, 2TB magnetic disks)
- 16 FU nodes

- FU: Dual E5-2670 8 core (2 x1 GbE)

- FU: Dual X5650 6 core (2 x1 GbE)

(.cms)

BU-FU appliance
-1BU (256 GB RAM, 2TB magnetic disks)

-8 FU nodes
- FU: Dual Haswell with 14 cores (10 GbE) CDR backbone

DAQ

L
° o

10 to Nx10 Gb/s

e
\Ts\E

Tier0
300-1500 —» CERN
MB/s Computer Center
— A
10 — 40 to 100 Gb/s

e x

10 — 40 to 100 Gb/s 10 — 40 to 100 Gb/s
| 4

s T2

oy

* Hundreds of computer centers (100-10k cores per site)

* Increased use as a cloud resources (any job anywhere)

* Increasing use of additional cloud and HPC resource

* Real time data processing at TierO

» Data and Simulation production at Tier1 and Tier2

» High bandwidth networks between disk storage

apparatus for doing Science.
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Summary

= Physics at collider 1s a computing intensive endeavor.
Extracting, sitmulating, reconstructing rare signal from
large amount of data.

= Decep learning offers great prospects for Science and
Physicists. Fast and efficient data processing.

= Deep learning 1s entering High Energy Physics data
processing at all levels. A lot done, a long way to go.

= Doing Al at colliders requires to keep an eye on particular
topics. Also relevant to other fields of Science.
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