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in a nutshell ...

High Energy Physics 
Endeavor
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The Large Hadron Collider
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8.5 kil
ometers  

     
     

     
     

     
     

     
    

Geneva, Switzerland
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Colliding Hadrons

!5

Probing fundamental laws of physics as large spectrum 
of particles (known and unknown) can be produced 
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The Standard Model
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Well demonstrated effective model  
We can predict most of the observations 
We can use a large amount of simulation
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1 event 
every 

500.000 proton 
 collision

Low probability of producing exotic and interesting signals. 
Observe rare events from a large amount of data.

Size Of The Challenge

!7
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HEP Data Pipeline
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LHC Computing Grid  
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0 
 Computing Center 

20k cores

CERN Tier-0/Tier-1 
 Tape Storage 
200PB total

LHC  Grid  
Remote Access  
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106  
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Event Triggering
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Select what is important to keep for analysis. 
Ultra fast decision in hardware and software.

Reconstruction(s) of the event under limited latency. 
Better resolution help lowering background trigger rates. 

Approximate deep learning surrogates can help.
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Reconstructing Collisions

!10

From digital signal, to local hits, to a sequence of objects, and high-level features. 
Complex and computing intensive tasks.

Detector 
DataDetector 
Data

Local 
reconstruction

Jet ClusteringParticle 
representation

High level 
features

Event Processing

Dimensionality reduction

Globalization of information
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Simulating Collisions

!11

Event Generator: compute predictions of the standard models to 
several orders of expansion in coupling constants (LO, NLO, 
NNLO, ...) using proton density functions.

Hadronization: phenomenological model of the evolution of 
hadrons under the effect of QCD.

Material simulator: transports all particles throughout meters of 
detector, using high resolution geometrical description of the 
materials.

Electronic emulator: converts simulated energy deposits in 
sensitive material, into the expected electronic signal, including 
noise from the detector.

Madgraph, 
Pythia, 
Sherpa, ...

Pythia, ...

GEANT 4, 
GEANT V

Homegrown 
software

Non-differentiable, computing intensive sequence of complex simulators 
of the signal expected from the detectors. 
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The Computing Cost of Science

!12

Ever growing needs for computing resource 
Slowdown of classical architecture 

 Growth of GPU architecture

https://indico.cern.ch/event/822126/contributions/3500169/ 

https://indico.cern.ch/event/822126/contributions/3500169/
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Take home message :  
Measure rare and exotic processes from orders 

of magnitude larger backgrounds. 
The Standard Model predicts with precision 

what to expect from many processes. 
Reconstruct, identify and reject large amount of 

event within resource constraints.
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Motivations for Using  
Machine Learning 

 in High Energy Physics
and elsewhere ...
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Overview

!15

Yann Le cun, CERN, 2016
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Supervised Learning

!16

● Given a dataset of samples, a subset of features is qualified as 
target, and the rest as input 

● Find a mapping from input to target 
● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 
 

● Finite set of target values :  
➔ Classification 

● Target is a continuous variable :  
➔ Regression

dataset≡ {( xi , yi)}i
find function f s.t. f (xi)= yi
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Unsupervised Learning

!17

● Given a dataset of samples, but there is no subset of feature 
that one would like to predict 

● Find mapping of the samples to a lower dimension manifold 
● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 

● Manifold is a finite set  
➔ Clusterization 

● Manifold is a lower dimension manifold :  
➔ Dimensionality reduction,  

density estimator

dataset≡ {(xi)}i
find f s.t. f (xi)= pi
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Reinforcement Learning

!18

● Given an environment with multiple states, given a 
reward upon action being taken over a state 

● Find an action policy to drive the environment toward 
maximum cumulative reward 
 
 
 
 
 

st+ 1= Env(st , at)
rt= Rew (st , at)

π (a∣ s)= P (At= a∣S t= s)
find π s.t.∑

t
r t is maximum
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Machine Learning in Industry

!19

https://www.nvidia.com/en-us/deep-learning-ai/ 

http://www.shivonzilis.com/machineintelligence 

Prominent skill in industry nowadays. 
Lots of data, lots of applications, lots 
of potential use cases, lots of money. 
Knowing machine learning can open 

significantly career horizons.
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Learning to Control

!20

Mastering the game of Go with deep neural networks and tree search, 
https://doi.org/10.1038/nature16961

Learning to Walk via Deep Reinforcement Learning 
https://arxiv.org/abs/1812.11103

Modern machine learning boosts control technologies. 
AI, gaming, robotic, self-driving vehicle, etc.

https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103
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Operation Vectorization

!21

ANN ≡ matrix operations  ≡ parallelizable

Computation of prediction from artificial neural network model 
can be vectorized to a large extend.
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Hyper-Fast Prediction

!22

Synthesizing FPGA firmware from trained ANN 
https://fastmachinelearning.org/hls4ml/ 

J. Duarte et al.[1804.06913] 

Artificial neural network model can be 
executed efficiently on FPGA, GPU, TPU, ...

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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Low Power Prediction

!23

Neuromorphic hardware dedicated to spiking neural networks 
Low power consumption by design

Slide C. Schumanhttps://indico.fnal.gov/event/13497/contribution/0 

https://indico.fnal.gov/event/13497/contribution/0
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Physics Knowledge 

!24

Machine Learning can help understand Physics.

P. Komiske, E. Metodiev, J. Thaler, [1810.05165] 

https://arxiv.org/abs/1810.05165
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Use Physics

!25

Let the model include Physics principles to master convergence

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia [1909.12790] 

https://arxiv.org/abs/1909.12790
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Learning from Complexity

!26

Machine learning model can extract information from complex dataset. 
More classical algorithm counter part may 

 take years of development. 
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AI in HEP

!27

LHC Computing Grid  
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0 
 Computing Center 

20k cores

CERN Tier-0/Tier-1 
 Tape Storage 
200PB total

LHC  Grid  
Remote Access  
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106  

AI

AI

AI

AI

AI

AI

Role of AI: accelerator control, data acquisition, 
event triggering, anomaly detection, new physics 
scouting, event reconstruction, event generation, 
detector simulation, LHC grid control, analytics, signal 
extraction, likelihood free inference, background 
rejection, new physics searches, ...

AI AI

➔ Up to date listing of references: 
https://github.com/iml-wg/HEPML-LivingReview 

https://github.com/iml-wg/HEPML-LivingReview
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Reconstruction

!28

Mostly pattern recognition tasks with regressions and classifications 
Development on multiple tasks: 

• Local energy reconstruction 
• Jet reconstruction 
• Particle (flow) reconstruction 
• Tracking 
• Vertexing 
• … 

Composite reconstruction and end-2-end approaches. 
 
Graph neural networks are emerging as overarching solutions for reconstruction tasks



Deep Learning at Colliders, SOS 2021, J-R Vlimant

Generative Models in HEP

!29

Enormous potential gain in computing performance (x thousands) 
Extensive R&D effort on-going 

• Better PDF 
• Faster phase space integration 
• Matrix element surrogates 
• Particle shower energy deposit simulation 
• Analysis-level sample production 
• Learning the detector transfer function 
• Reconstructed-particle-level fast simulation 
• … 

Extension of such models 
• Unfolding mechanism 
• Anomaly detection 
• Background subtraction 
• … 

Generative adversarial network (GAN),Variational Auto-Encoder (VAE) and 
hybrid solutions taking the best of both methods

Diagram A. Butter
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Taking Control of Apparatus

!30

Multiple components of HEP data pipe-line can be operated with AI 
• Accelerators 
• Detectors 
• DAQ/trigger 
• Internet networking 
• Data management 
• Computing facilities 
• … 

Reinforcement learning for learning policies is challenging to put in 
practice (environment simulation / lots of data required, …). 
Alternative approaches using supervised learning.  
   
Potential gain in operation cost, and utilization efficiency.
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Possible Utilizations

!31

Accuracy Speed

Interpretable

➔ Fast surrogate models (trigger, simulation, etc) ; even better if more accurate.  
➔ More accurate than existing algorithms (tagging, regression, etc) ; even better if faster. 
➔ Model performing otherwise impossible tasks (operations, etc)
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Growing Literature 

!32

Community-based up to date listing of references 
https://iml-wg.github.io/HEPML-LivingReview/

https://inspirehep.net/literature?q=machine learning or deep learning 

https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature?q=machine%20learning%20or%20deep%20learning
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Take home message :  
Machine Learning is a widely recognized and 

used technology in industry 
Deep Learning has the potential of helping 

Science to make progress 
Neural Networks could help with the computing 

requirements of Science 
Wide range of potential applications
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Deep Learning 
 in High Energy Physics

The 10 miles view.
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Producing the Data

!35

Opportunities in Machine Learning for Particle Accelerators [1811.03172] 
Machine learning for design optimization of storage ring nonlinear dynamics [1910.14220] 
Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report [2001.05461] 
Machine learning for beam dynamics studies at the CERN Large Hadron Collider [2009.08109] 
…

A. Scheinker, C. Emma, A.L. Edelen, S. Gessner  
[2001.05461] 

• Machine learning can be used to 
tune devices, control beams, 
perform analysis on accelerator 
parameters, etc. 

• Already successfully deployed 
on accelerator facilities. 

• More promising R&D to 
increase beam time.

https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461
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Acquiring Data

!36

• Machine learning since long 
deployed in the trigger for 
selected signatures. 

• Further potential for background 
trigger rate reduction. 

• Emerging opportunity for 
triggering on unknown 
signatures. 

• More promising R&D and 
experiment adoption.

Use of variational auto-encoders directly on data to marginalize outlier 
events, for anomalous event hotline operation. 

[doi:0.1007/JHEP05(2019)036] 

Hands-on

https://doi.org/10.1007/JHEP05(2019)036


Deep Learning at Colliders, SOS 2021, J-R Vlimant

Compressing Data

!37

Use of auto-encoder model  
http://lup.lub.lu.se/student-papers/record/9004751 

• Rich literature on data 
compression of image with 
neural network. 

• Make use of abstract semantic 
space for image compression. 

• Image compression can suffer 
some loss of resolution. 

• Saving on disk/tape cost. 
Potential in scouting data 
analysis. 

• R&D needed to reach the 
necessary level of fidelity.

http://lup.lub.lu.se/student-papers/record/9004751
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Cleaning Data
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Towards automation of data quality system for CERN CMS experiment [doi:10.1088/1742-6596/898/9/092041]  
LHCb data quality monitoring [doi:10.1088/1742-6596/898/9/092027]  
Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider [1808.00911]  
Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment [doi:10.1051/epjconf/
201921406008]  
…

• Data quality is a person power 
intensive task, and crucial for 
swift delivery of Physics 

• Machine learning can help with 
automation. 

• Learning from operators, 
reducing workload. 

• Continued R&D and experiment 
adoption.

A.A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth 
[doi:10.1007/s41781-018-0020-1] 

https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1
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Managing Data

!39

• The LHC-grid is key to success 
of the LHC experiments. 

• Complex ecosystem with 
dedicated operation teams. 

• Person power demanding, and 
inefficient in some corner of the 
phase space. 

• Potential for AI-aided operation. 
• Lots of modeling and control 

challenges. 
• R&D to increase operation 

efficiency.

[cds:2709338] 
https://operational-intelligence.web.cern.ch 

Caching suggestions using Reinforcement Learning 
LOD 2020, in proceedings

http://cds.cern.ch/record/2709338/
https://operational-intelligence.web.cern.ch
https://lod2020.icas.xyz/program/
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Reconstructing Data

!40

• Event reconstruction is pattern 
recognition to a large extend. 
Advanced machine learning 
techniques can help. 

• Learn from the simulation, and/or 
data. 

• Learn from existing “slow 
reconstruction” or simulation 
ground truth. 

• Automatically adapt algorithm to 
new detector design. 

• Image base methods evolving 
towards graph-based methods. 

• Accelerating R&D to exploit full 
potential.Much more relevant work going on. 

https://iml-wg.github.io/HEPML-LivingReview/ 

Learning graphs from sets, applied to vertexing 
[2002.08772] 

GNN applied to charged particle tracking 
[2007.00149] Hands-on

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149
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Simulating Data

!41

• Fully detailed simulation is 
computing intensive. 

• Fast and approximate simulators 
already in operation. 

• Applicable at many levels : 
sampling, generator, detector 
model, analysis variable, etc 

• Generative models can provide 
multiple 1000x speed-up. 

• Careful study of statistical power 
of learned models over training 
samples. 

• Many R&D, experiment adoption 
starting.

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

Generative Adversarial Networks for LHCb Fast Simulation 
[2003.09762]

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762
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Calibrating Data

!42

• Energy regression is the most 
obvious use case. 

• Learning calibrating models from 
simulation and data. 

• Parametrization of scale factors 
using neural networks. 

• Reducing data/simulation 
dependency using domain 
adaptation. 

• Continued R&D

A deep neural network for simultaneous estimation of b jet energy and resolution

[1912.06046] 

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

https://arxiv.org/abs/1912.06046
https://iml-wg.github.io/HEPML-LivingReview/
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Analyzing Data

!43

• Machine learning has long 
infiltrated analysis for signal/bkg 
classification. 

• Increasing number of analysis 
with more complex DNN. 

• Application to signal 
categorization, bkg modelling, 
kinematics reconstruction, decay 
product assignment, object 
identification, … 

• Breadth of new model agnostic 
methods for NP searches. 

• Continued R&D and experiment 
adoption initiated.

Use of masked autoregressive density estimator with normalizing flow 
as model-agnostic signal enhancement mechanism. 

[doi:10.1103/PhysRevD.101.075042] 

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/


Deep Learning at Colliders, SOS 2021, J-R Vlimant

Theory Behind the Data

!44

• Hypothesis testing is the core of 
HEP analysis. 

• Intractable likelihood hinders 
solving the inverse problem. 

• Going beyond the standard 
approach using machine learning 
and additional information from 
the simulator. 

• More precise evaluation of the 
priors on theory's parameters. 

• May involve probabilistic 
programming instrumentation of 
HEP simulator. 

• R&D to bring this in the 
experiment.

The frontiers of simulation-based inference 
[1911.01429] 

https://github.com/probprog/pyprob

Constraining EFT with ML 
[1805.00013] 

Hands-on

https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013
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Take home message :  
Rapid growth of machine learning 

applications in HEP 
(too) Slowly turning proofs of concept into 

production 
Exciting time ahead exploiting further the 

potential of AI
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HEP-specific  
elements of AI

Where innovation lies.
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Data Representation
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From RAW to High Level Features

!48

From digital signal, to local hits, to a sequence of objects, and high-level features. 
Complex and computing intensive task that could find a match in ML application.

Detector 
DataDetector 
Data

Local 
reconstruction

Jet ClusteringParticle 
representation

High level 
features

Event Processing

Dimensionality reduction

Globalization of information
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Image Representation

W vs QCD

Jet-Images – Deep learning edition 
 [1511.05190] 

Calorimeter signal are image-like. 
Projection of reconstructed particle properties onto images possible. 

Potential loss of information during projection.

Deep-learning top taggers or the end of QCD? 
[1701.08784] 

Top vs QCD

!49
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Sequence Representation

QCD-Aware Recursive Neural Networks for Jet Physics. 
[1702.00748] B-Jet with Recurrent Neural Networks  

[cds:2255226] 

Somehow arbitrary choice on ordering with sequence representation. 
Physics-inspired ordering as inductive bias. 

Ordering can be learned too somehow.

!50
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Hits in calorimeter detector

Hits in tracking detector

Graph Representation

!51

Heterogenous data fits well in graph/set representation. 

Objects in an event

Object sub-structure in an event

Graph Neural Networks in Particle Physics 
[2007.13681] 

https://arxiv.org/abs/2007.13681
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Invariance and Symmetries
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Dataset Degeneracy

!53

  

Pre-process the dataset to reduce degeneracy.  
Model training improves as the invariance does not have to be learned.

boost 

≈

𝜂-𝜑 rot. 

≈

https://arxiv.org/abs/2006.04780
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Inductive Bias

!54

Embed the symmetry and invariance in the model. 
Economy of model parameters.

Deep set 
[1810.05165] 

Lorentz Learning Layer 
[1707.08966] 

Lorentz group quivariant networks 
[2006.04780] 
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de-correlation
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De-correlation

!56

Numerous methods proposed to de-correlate model predictions and 
quantities of interest (pT, mass, … ). 

Usually adding a term in the loss to constrain de-correlation.

Domain adaptation [1409.7495]  
Learn to Pivot [1611.01046] 

Most background estimation methods (side-bands, ABCD, parametrized fit, …) 
will require background shape to somehow be independent of analysis 

selections/processing (not only when using machine learning BTW).

https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1611.01046


Deep Learning at Colliders, SOS 2021, J-R Vlimant

Performance

!57

Jenson-Shannon Divergence (JSD) as the comparison metric for shaping. 
Residual shaping needs to enter systematics uncertainty estimation.

ATLAS Collab. [cds:2630973] CMS Collab. 
[doi:10.1088/1748-0221/15/06/P06005] 

DISCO: Distance Correlation 
[2001.05310]

http://cdsweb.cern.ch/record/2630973
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/2001.05310
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Background Estimation

!58

ABCD + Disco 
[2007.14400] 

Most popular background estimation method (ABCD), can be optimized 
for de-correlation, yielding increased significance.

https://arxiv.org/abs/2007.14400
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Systematic Uncertainties
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Syst. Estimation and Mitigation

!60

Learn to pivot [1611.01046] 

Systematic uncertainties can be propagated the usual ways. 
No additional systematic from the model itself.    

Methods to mitigate, propagate and optimize against systematic uncertainties.

INFERNO: Inference-Aware Optimisation [1806.04743] 

Parametrized Learning [1601.07913] 
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Domain Dependence
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Domain in-Dependence

!62

Gradient reversal on a domain-classifier to mitigate the discrepancies of 
classifier output between data and simulation.

LLP jet tagger 
[doi:10.1088/2632-2153/ab9023]

flatter

Control region

flatter

Training region

https://doi.org/10.1088/2632-2153/ab9023
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Model Inference
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Inference Engines

!64

Growing list of deep learning accelerators. 
Location of the device is driven by the environment (HLT, Grid, … ).

“On-Board accelerator”

“Remote accelerator”

https://arxiv.org/abs/1811.04492  
https://arxiv.org/abs/2007.10359  
https://arxiv.org/abs/2007.14781 

https://arxiv.org/abs/1811.04492
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.14781
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Model Compression

!65

Model inference can be accelerated by reducing 
the number and size of operations.

Quantization [2006.10159] Pruning weights [1804.06913] 
Hands-on

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/1804.06913
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Simulation Surrogate
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Reconstruction ◦ Simulation ∼ Identity

!67

Simulation aims at predicting the outcome of collisions. 
Reconstruction aims at inverting it. 

Multiple ways to connect intermediate steps with deep learning.
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https://arxiv.org/abs/2010.01835

Suiting Models

!68

https://arxiv.org/abs/2006.06685

Learn the parton➾detector function instead of 
generating samples from vacuum.

https://arxiv.org/abs/2010.01835
https://arxiv.org/abs/2006.06685
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Statistical Power

!69

https://arxiv.org/abs/2008.06545 

Generative adversarial network may help producing samples with 
higher statistical power than the one used for training.

x10 x25
x4

https://arxiv.org/abs/2008.06545
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Anomaly Search
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The Sea Beyond Standard Model

!71

Slide: A. Wulzner [H&N] 

http://www.weizmann.ac.il/conferences/SRitp/Aug2019/
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“One-Sided” Hypothesis Testing
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LHC Olympics 2020 [2101.08320] 

• Rigor in calibrating the rate of 
anomaly is HEP specific 
(Anomaly detection is not). 

• Some methods can serve as a 
hotline: notification of odd 
signals. 

• Some methods can serve in 
analysis:  calibrated rate of 
novelty. 

• Also of great importance in data 
quality monitoring/certification.



Deep Learning at Colliders, SOS 2021, J-R Vlimant
!73

Interpretability
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The Black-box Dilemma
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Deep learning may yield great improvements. 
Having the “best classification performance” is not always sufficient. 

Forming an understand of the processes at play is often crucial.

Deep Learning
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Learning Observables
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https://arxiv.org/abs/2010.11998 
https://arxiv.org/abs/2011.01984 

Search in the space of functions using decision ordering. 
Simplified to the energy flow polynomial subspace. 
Extract set of EFP that matches DNN performance.

Electron classification performance

https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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Taking Control



Deep Learning at Colliders, SOS 2021, J-R Vlimant

HEP Instruments
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https://home.cern/science/computing/grid

https://home.cern/science/accelerators/ 

DAQ [IEEE:7111380] 

Unique set of complex apparatus for doing Science.
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Summary
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➡Physics at collider is a computing intensive endeavor. 
Extracting, simulating, reconstructing rare signal from 
large amount of data. 
➡Deep learning offers great prospects for Science and 
Physicists. Fast and efficient data processing. 
➡Deep learning is entering High Energy Physics data 
processing at all levels. A lot done, a long way to go. 
➡Doing AI at colliders requires to keep an eye on particular 
topics. Also relevant to other fields of Science.


