
Introduction to Deep Learning:
Lecture II

Michael Kagan

SLAC

IN2P3 School of Statistics 2021
January 26, 2021

The Plan

• From Logistic Regression to Neural Networks

• Basics of Neural Networks

• Deep Neural Networks

• Convolutional Neural Networks

• Recurrent Neural Networks
– And a bit about Graph Neural Networks

• AutoEncoders and Generative Models

2

Sequential Data

• Many types of data are not fixed in size

• Many types of data have a temporal or
sequence-like structure
– Text
– Video
– Speech
– DNA
– …

• MLP expects fixed size data

• How to deal with sequences?

3

Sequential Data

• Given a set 𝒳, let 𝑆 𝒳 be the set of sequences,
where each element of the sequence 𝑥! ∈ 𝒳
– 𝒳 could reals ℝ! , integers ℤ! , etc.
– Sample sequence 𝑥 = {𝑥", 𝑥#, … , 𝑥$}

• Tasks related to sequences:
– Classification 𝑓: 𝑆 𝒳 → {𝒑 |∑%&"' 𝑝(=
1}

– Generation 𝑓: ℝ) → 𝑆 𝒳
– Seq.-to-seq. translation 𝑓: 𝑆 𝒳 → 𝑆 𝒴

4

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent States

• Input sequence 𝑥 ∈ 𝑆(ℝ!) of variable length 𝑇(𝑥)

• Standard approach: use recurrent model that
maintains a recurrent state 𝒉" ∈ ℝ# updated at each
time step 𝑡. For 𝑡 = 1,… , 𝑇 𝑥 :

𝒉"$% = 𝜙(𝒙", 𝒉"; 𝜃)

– Simplest model:

𝜙 𝒙! , 𝒉!;𝑊, 𝑈 = 𝜎(𝑊𝒙! + 𝑈𝒉!)

• Predictions can be made at any time 𝑡 from the
recurrent state

𝒚" = 𝜓(𝒉"; 𝜃)

5

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 6

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 7

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 8

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 9

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks 10

Credit: F. Fleuret

Prediction per sequence element

Although the number of steps 𝑇(𝑥) depends on 𝑥, this is a standard
computational graph and automatic differentiation can deal with it as
usual. This is known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Stacked RNN 11

𝒙":$

𝒘

𝑹𝑵𝑵 𝒉":$ 𝑹𝑵𝑵 𝒉":)
(𝟐) … 𝑹𝑵𝑵 𝒉":)

(𝑵)

Stacked RNN 12

𝜙(.)ℎ0
(.) ℎ"

(.) … 𝜙(.) ℎ$1"
(.) 𝜙(.) ℎ$

(.)

𝒙":$

𝒘

𝑹𝑵𝑵 𝒉":$ 𝑹𝑵𝑵 𝒉":)
(𝟐) … 𝑹𝑵𝑵 𝒉":)

(𝑵)

Two Stacked LSTM Layers

1st RNN Layer

2nd RNN Layer

Zoom in

Bi-Directional RNN 13

ℎ0
(") ℎ"

(")

𝒘

𝜙(")

𝑥"

ℎ0
(") ℎ"

(.)𝜙(.)

𝜙(") …

𝜙(.) …

𝜙(") ℎ$1"
(") 𝜙(") ℎ$

(")

𝜙(.) ℎ$1"
(.) 𝜙(.) ℎ$

(.)

𝑥. 𝑥$1" 𝑥$

Backward in time RNN Layer

Forward in time RNN Layer

• Gating:
– network can grow very deep,

in time à vanishing gradients.
– Critical component: add pass-through (additive paths)

so recurrent state does not go repeatedly through
squashing non-linearity.

Gating 14

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

• Gating:
– network can grow very deep,

in time à vanishing gradients.
– Critical component: add pass-through (additive paths)

so recurrent state does not go repeatedly through
squashing non-linearity.

• LSTM:
– Add internal state separate

from output state
– Add input, output, and

forget gating

Long Short Term Memory (LSTM) 15

x t

h t

ct⊙ +

σ σ

ft c̄t

h t−1

ct−1

σ tanh

it

⊙

ot ⊙

tanh

f t = σ W [h ,x] + b (
f

T
t−1 t f)

29 / 69

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Comparison on Toy Problem 16

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples 17

Y. Wu et al, 2016

https://arxiv.org/abs/1609.08144

Examples 18

Self-driving Mario Kart with RNN: YouTube video

https://youtu.be/Ipi40cb_RsI

Examples 19

Shen et al., 2017

https://arxiv.org/abs/1712.05884

Graph Data 20

Graph Data

• Sequential data has single (directed) connections
from data at current time to data at next time

• What about data with more complex dependencies

21

x1 x2 x3 xT…

Image Credit: I. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

Graphs

• Adjacency matrix: 𝐴(. = 𝛿(𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗)

• Each node can have features

• Each edge can have features, e.g. distance between nodes

22

Vertex / node

Edge

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 23

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 24

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 25

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 26

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing 27

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples 28

Schutt et al. 2017

https://www.nature.com/articles/ncomms13890

Examples 29

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405

Beyond Regression and Classification

30

Beyond Regression and Classification

• Not all tasks are predicting a label from features, as in
classification and regression

• May want / need to explicitly model a high-dim. signal
– Data synthesis / simulation
– Density estimation
– Anomaly detection
– Denoising, super resolution
– Data compression
– …

• Often don’t have labels à Unsupervised Learning

• Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe the data

31

Modeling Data and Meaningful Degrees of Freedom 32

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 33

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 34

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 35

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling High Dimensional Data

• Must first determine the question we want to ask,
and formulate an appropriate loss function
– Loss function encodes the quality of model prediction
– Parameterize models with neural networks

• Will have many of the same theoretical and
practical issues as in classification and regression
–What is the right class and structure of the model

(CNN, RNN, graph, etc.)?
– How do we stably optimize the loss w.r.t. parameters?

36

Autoencoders

37

Meaningful Representations

• How can we find the “meaningful degrees of
freedom” in the data?

• Dimensionality Reduction / Compression
– Can we compress the data to a latent space with smaller

number of dimensions, and still recover the original data
from this latent space representation?

– Latent space must encode and retain the important
information about the data

– Can we learn this compression and latent space

38

Autoencoders

• Autoencoders map a space to itself through a compression,
𝑥 → 𝑧 → 5𝑥, and should be close to the identity on the data

– Data: 𝑥 ∈ 𝒳 Latent space: z ∈ ℱ

– Encoder: Map from 𝒳 to a lower dimensional latent space ℱ
• Parameterize as neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space ℱ back to data space 𝒳
• Parameterize as neural network 𝑔" 𝑧 with parameters 𝜓

39

Autoencoders

• Autoencoders map a space to itself through a compression,
𝑥 → 𝑧 → 5𝑥, and should be close to the identity on the data

– Data: 𝑥 ∈ 𝒳 Latent space: z ∈ ℱ

– Encoder: Map from 𝒳 to a lower dimensional latent space ℱ
• Parameterize as neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space ℱ back to data space 𝒳
• Parameterize as neural network 𝑔" 𝑧 with parameters 𝜓

• What is the latent space? What are 𝑓(𝑥) and g(𝑧)?
– Choose a latent space dimension D
– Learn mappings 𝑓(𝑥) to representation of size D,

and back with g(𝑧)

40

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁.

!

𝑥! − 𝑔" 𝑓# 𝑥!
$

• Minimize this loss over parameters of encoder (𝜃)
and decoder (𝜓).

41

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁.

!

𝑥! − 𝑔" 𝑓# 𝑥!
$

• Minimize this loss over parameters of encoder (𝜃)
and decoder (𝜓).

• NOTE: if 𝑓# 𝑥 and 𝑔" 𝑧 are linear, optimal
solution given by Principle Components Analysis

42

Autoencoder Mappings

• If the latent space is of lower dimension, the
autoencoder has to capture a “good”
parametrization, and in particular dependencies
between components

43

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Autoencoder 44

𝑥 𝑧 #𝑥𝑓(") 𝑔(5)

• When 𝑓& and 𝑔' are multiple neural network layers,
can learn complex mappings between 𝒳 and ℱ
– 𝑓" and 𝑔# can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

𝑓(.) 𝑓(5) 𝑔(.) 𝑔(")

Deep Autoencoder 45

𝑥 𝑧 #𝑥𝑓6 𝑔7

• When 𝑓& and 𝑔' are multiple neural network layers,
can learn complex mappings between 𝒳 and ℱ
– 𝑓" and 𝑔# can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

Deep Convolutional Autoencoder 46

Fleuret, Deep Learning Course

𝑓6 and 𝑔7 are each
5 convoluMonal layers

https://fleuret.org/dlc/

Interpolating in Latent Space 47

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? 48

• Can we sample in latent space
and decode to generate data?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? 49

• Can we sample in latent space
and decode to generate data?

• What distribution to sample
from in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder?

• Doesn’t work! Don’t know the right latent space density
– Don’t have model of where the encoder encodes!

50

• Can we sample in latent space
and decode to generate data?

• What distribution to sample
from in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Generative Models

51

Generative Models 52

• Generative models aim to:
– Learn a distribution 𝑝(𝑥) that explains the density of

the data
– Draw samples of plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of a data point x

• Implicit Models
– Can only sample from 𝑝(𝑥), but not evaluate density

Latent Variable Models 53

• Observed random variable 𝑥 depends on unobserved
latent random variable 𝑧
– Interpret 𝑧 as the causal factors for 𝑥

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is a stochastic generation process from 𝑧 → 𝑥

• Inference from posterior: 𝑝 𝑧 𝑥 = (𝑥 𝑧 ()
((+)

– Usually can’t compute marginal 𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

𝑧 𝑥

Autoencoder: Deterministic to Probabilistic

• Consider probabilistic relationship between data and
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

54

Prior over latent spaceDecoding data x
from latent z

From Deterministic to Probabilistic Autoencoder 55

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥
-.!(/0

𝑧 → 𝑝(𝑥|𝑧)

– Choose simple prior distribution

– Encoder: Learn what latents can produced data: 𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent: 𝑝(𝑥|𝑧)

• Consider probabilistic relationship between data and
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

Probabilistic Picture 56

*

⋆

Draw sample*
x

Probabilistic Picture 57

*

⋆

Draw sample*
x

Reconstruction Loss: Maximize expected likelihood of
decoding 𝑥 from encodings of 𝑥

𝐿$%&' = 𝔼(~*((|-) log 𝑝 𝑥 𝑧 ≈
1
𝑁 >
(!~*((|-)

log 𝑝 𝑥 𝑧/

Variational Autoencoder

• 𝐿$%&' =
0
1
∑(~*"((|-) log 𝑝" 𝑥 𝑧/

• Prior 𝑝 𝑧 describes the latent space distribution,
need to ensure the encoder is consistent with prior

58

Variational Autoencoder

• 𝐿$%&' =
0
1
∑(~*"((|-) log 𝑝" 𝑥 𝑧/

• Prior 𝑝 𝑧 describes the latent space distribution,
need to ensure the encoder is consistent with prior

• Constrain difference between distributions with
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧 = /𝑞 𝑧 𝑥 log

𝑞 𝑧 𝑥
𝑝 𝑧 𝑑𝑧

– 𝐷&'[𝑞|𝑝] ≥ 0 and is only 0 when 𝑞 = 𝑝

59

Variational Autoencoder

• 𝐿$%&' =
0
1
∑(~*"((|-) log 𝑝" 𝑥 𝑧/

• Prior 𝑝 𝑧 describes the latent space distribution,
need to ensure the encoder is consistent with prior

• VAE full objective

max
(,*

𝐿 𝜃, 𝜓 = max
(,*

𝔼+! 𝑧 𝑥 log 𝑝((𝑥|𝑧) − 𝐷&'[𝑞* 𝑧 𝑥 |𝑝(𝑧)]

60

Variational Autoencoder

• 𝐿$%&' =
0
1
∑(~*"((|-) log 𝑝" 𝑥 𝑧/

• Prior 𝑝 𝑧 describes the latent space distribution,
need to ensure the encoder is consistent with prior

• VAE full objective

max
(,*

𝐿 𝜃, 𝜓 = max
(,*

𝔼+! 𝑧 𝑥 log 𝑝((𝑥|𝑧) − 𝐷&'[𝑞* 𝑧 𝑥 |𝑝(𝑧)]

61

NOTE: there is a formal derivation using variational inference
– Relies on the fact that log 𝑝 𝑥 ≥ 𝔼!8 𝑧 𝑥 log 𝑝 𝑥 𝑧 − 𝐷"# 𝑞$ 𝑧 𝑥 𝑝 𝑧 ≡ 𝐸𝐿𝐵𝑂(𝑥; 𝜓)

– 𝑞"(𝑧|𝑥) is a variational approximation of posterior 𝑝(𝑧|𝑥)
– Maximize ELBO w.r.t. 𝜓 to get closer to 𝑝(𝑥)

How do we design Encoder and Decoder

• Classification / regression models make single
predictions…

How to model a conditional density 𝑝(𝑎|𝑏) ?

62

How do we design Encoder and Decoder

• Classification / regression models make single
predictions…

How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of density depend on conditioned variable

63

How do we design Encoder and Decoder

• Classification / regression models make single
predictions…

How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of density depend on conditioned variable

• Use neural network to model density parameters

64

𝜇(𝑏)

𝜎(𝑏)
𝑏

𝑝(𝑎|𝑏 = 𝑏") 𝑝(𝑎|𝑏 = 𝑏.)

𝑎

𝑝(
𝑎|
𝑏)

𝜇(𝑏")

𝜎(𝑏")

The Decoder

• Decoder
– Neural network with parameters 𝜃
– Input 𝑧à output estimate of Gaussian 𝜇7(𝑧) , 𝜎7(𝑧)

• Likelihood of a data point x

log 𝑝 𝑥 𝑧 = −log 𝜎7(𝑧) −
𝑥 − 𝜇7 𝑧 #

𝜎7 𝑧 # + 𝑐𝑜𝑛𝑠𝑡

65

The Encoder

• Encoder
– Neural network with parameters 𝜓
– Input 𝑥à outputs estimate of Gaussian 𝜇8(𝑥) , 𝜎8(𝑥)

• For reconstruction loss:
– Need a value of 𝑧 to evaluate decoder!
– Need to gradient through 𝑧 to encoder parameters

max
(,*

𝐿 𝜃, 𝜓 = max
(,*

@
4"~+! 𝑧 𝑥

log 𝑝((𝑥|𝑧6) − log
𝑞* 𝑧6 𝑥
𝑝 𝑧6

66

Reparameterization trick

• For z~𝑝#(𝑧), rewrite 𝑧 as a function of a random
variable 𝜖 whose distributions 𝑝(𝜖) does not
depend on 𝜃
– Gaussian Example:

𝑧~𝒩 𝜇, 𝜎 → 𝑧 = 𝜎 ∗ 𝜖 + 𝜇 𝑤ℎ𝑒𝑟𝑒 𝜖~𝒩(0,1)

• VAE Loss

max
!,"

𝐿 𝜃, 𝜓 = max
!,"

?
8~:(8)

log 𝑝! 𝑥 𝑧; = 𝜖 ∗ 𝜎" 𝑥 + 𝜇" 𝑥 − log
𝑞" 𝑧; 𝑥
𝑝 𝑧;

67

Examples 68

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Examples 69

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

Another Way To Do Generative Modeling… 70

Another Way To Do Generative Modeling…

• Another approach to generative modeling is to
formulate the task as a two player game

• One player tries to output data that looks as real
as possible

• Another player tries to compare real and fake data

• In this case we need:
– A generator that can produce samples
– A measure of not too far from the real data

71

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔" 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the generated distribution 𝑝"(𝑥) is,
but we can sample from it à Implicit Model

72Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔" 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the generated distribution 𝑝"(𝑥) is,
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑦 = 𝑟𝑒𝑎𝑙 𝑥)

– This classifier is our measure of not too far from the real data

73Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Setup

• Generator’s goal is to produce fake data that tricks
the discriminator to think it is real data

• Discriminator wants to miss-classify data as real or
fake as little as possible

• The setup is adversarial because the two networks
have opposing objectives

74

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

GAN Objective

• Data
– Real data samples: 𝑥!, 𝑦! = 1

– Fake data samples: C𝑥! = 𝑔"(𝑧!), C𝑦! = 0 with: 𝑧!~𝑝(𝑧)

75

GAN Objective

• Data
– Real data samples: 𝑥!, 𝑦! = 1

– Fake data samples: C𝑥! = 𝑔"(𝑧!), C𝑦! = 0 with: 𝑧!~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

76

L(�) = � 1

2N

NX

i=1

h
y

i

log d

�

(x

i

) + (1� ỹ

i

) log(1� d

�

(x̃

i

))

i

= � 1

2N

NX

i=1

h
log d

�

(x

i

) + log(1� d

�

(g

✓

(z

i

)))

i

= �E
x⇠pdata(x)

h
log d

�

(x)

i
� E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

GAN Objective

• Data
– Real data samples: 𝑥!, 𝑦! = 1

– Fake data samples: C𝑥! = 𝑔"(𝑧!), C𝑦! = 0 with: 𝑧!~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

77

L(�) = � 1

2N

NX

i=1

h
y

i

log d

�

(x

i

) + (1� ỹ

i

) log(1� d

�

(x̃

i

))

i

= � 1

2N

NX

i=1

h
log d

�

(x

i

) + log(1� d

�

(g

✓

(z

i

)))

i

= �E
x⇠pdata(x)

h
log d

�

(x)

i
� E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

GAN Objective

• Data
– Real data samples: 𝑥!, 𝑦! = 1

– Fake data samples: C𝑥! = 𝑔"(𝑧!), C𝑦! = 0 with: 𝑧!~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

78

L(�) = � 1

2N

NX

i=1

h
y

i

log d

�

(x

i

) + (1� ỹ

i

) log(1� d

�

(x̃

i

))

i

= � 1

2N

NX

i=1

h
log d

�

(x

i

) + log(1� d

�

(g

✓

(z

i

)))

i

= �E
x⇠pdata(x)

h
log d

�

(x)

i
� E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

GAN Objective

• However, generator isn’t fixed… have to train it!

79

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

80

V (�, ✓) = E
x⇠pdata(x)

h
log d

�

(x)

i
+ E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

81

V (�, ✓) = E
x⇠pdata(x)

h
log d

�

(x)

i
+ E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

82

V (�, ✓) = E
x⇠pdata(x)

h
log d

�

(x)

i
+ E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin

✓
max

�
V (�, ✓)

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

83

V (�, ✓) = E
x⇠pdata(x)

h
log d

�

(x)

i
+ E

z⇠p(z)

h
log(1� d

�

(g

✓

(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin

✓
max

�
V (�, ✓)

NOTE: can prove that
minimax soluAon
corresponds to generator
that perfectly reproduces
data distribuAon

𝑞6∗ 𝑥 = 𝑝@ABA(𝑥)

GAN Training

• Alternating Gradient descent to solve the min-max problem:

𝜃 ← 𝜃 − 𝛾∇"𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑#)
𝜕𝑔

𝜕𝑔"
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇#𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑#)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near
optimal

84

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Training Example 85

GAN Lab Demo

https://poloclub.github.io/ganlab/

Examples 86

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges

• Oscillations without convergence: unlike standard loss
minimization, alternating stochastic gradient descent has
no guarantee of convergence.

• Vanishing gradients: if classifier is too good, value
function saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution modes.

• Difficult to assess performance, when are generated data
good enough?

87

Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

Improving GANS

• Standard GANS compare real
and fake distributions with
Jensen-Shannon Divergence,
“vertically”

• Wasserstein-GAN (Arjovsky
et al, 2017) compares
“horizontally” with
Wasserstein-1 distance
(a.k.a. Earth Movers distance)

• Substantially improves
vanishing gradient and mode
collapse problems!

88

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

WGAN Examples 89

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3

Scaling Up 90

Progressive GAN

Scaling Up 91

BigGAN

StyleGAN v2

Applications: Image-to-Image Translation with CycleGAN 92

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A

Applications: Text-to-Image Synthesis with StackGAN 93

Conclusions

• Deep neural networks are an extremely powerful
class of models

• We can express our inductive bias about a system
in terms of model design, and can be adapted to a
many types of data

• Even beyond classification and regression, deep
neural networks allow for powerful model
schemes such as Variational Autoencoder and
Generative adversarial Networks

94

95

• Autoencoders learn the latent space, but we don’t
know what is the latent space distribution

• Autoencoder prescribes a deterministic
relationship between data space and latent space

• One set of “meaningful degrees of freedom” can
only describe one data space point

96

Denoising Autoencoder

97

Denoising Autoencoders

• Learn a mapping from corrupted data space 5𝒳
back to original data space

–Mapping 𝜙I O𝒳 = 𝒳
– 𝜙I will be a neural network with parameters 𝑤

• Loss:

L =
1
𝑁.

!

𝑥! − 𝜙1(𝑥! + 𝜖!)

98

Perturbation, e.g. Gaussian noise

Denoising Autoencoders Examples 99

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Sets

10
0

What if our data has no time structure?

• Data may be variable in length but have no
temporal structure à Data are sets of values

• One option: If we know about the data domain,
could try to impose an ordering, then use RNN

• Better option: use system that can operate on
variable length sets in permutation invariant way

–Why permutation invariant à so order doesn’t matter

10
1

Deep Sets 10
2

x1

w

𝜙

h1

Deep Sets 10
3

x1

w

𝜙

h1

x2

𝜙

h2

Deep Sets 10
4

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Deep Sets 10
5

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

&ℎ":$
Permutation invariant
operation: Sum, Max, …

Deep Sets 10
6

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

&ℎ":$

F ywF

Examples 10
7

M. Zaheer et. al 2017

Outlier detection

Medical Imaging

M. Ilse et al., 2018

With more complex architecture

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

Explicit Density Estimation with Normalizing Flows

10
8

Explicit Density Estimation

• In VAE and GAN we can learn to sample from
the distribution…

• Is there a way to learn the explicit density 𝑝(𝑥) ?

10
9

Reminder: Calculus Change of Variables

∫ 𝑓 𝑔 𝑥 JK(𝒙)
)𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢 where 𝑢 = 𝑔 𝑥

Multivariate:
∫ 𝑓 𝑔 𝒙 det JK(𝒙)

)𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖 where 𝒖 = 𝑔 𝒙

11
0

Determinant of Jacobian
of the transformaMon

à Change of volume

Change of Variables in Probability
• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝M 𝒙 = 𝑝N 𝒛 det JO 𝒛
)𝒛

Q"
where 𝒙 = 𝜙 𝒛

11
1

The term det CD 𝒛
@𝒛

1"
accounts for the local stretching of space

Change of Variables with Neural Networks 11
2

• 𝑥 = data we want to model, 𝑧 = known noise

• 𝜙&(𝑧) will be a neural network with parameters 𝜃
– Must be continuous, invertible, differentiable

• Output of 𝜙 is a potential sample 𝑥
– Learn the right 𝜙: adjust weights 𝜃 to maximize data

probability (formula above)

• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝M 𝒙 = 𝑝N 𝒛 det JO 𝒛
)𝒛

Q"
where 𝒙 = 𝜙 𝒛

Change of Variables with Neural Networks 11
3

• 𝑥 = data we want to model, 𝑧 = known noise

• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝M 𝒙 = 𝑝N 𝒛 det JO 𝒛
)𝒛

Q"
where 𝒙 = 𝜙 𝒛

𝜙Q" 𝒙 inverse
– Input = a sample X
– Output = a sample of noise

𝜙 𝒛 neural network
– Input = a sample of noise
– Output = a sample of X

⟺

• Calculate the probability of a sample using the formula above

Normalizing Flows 11
4

𝑝F 𝒙 = 𝑝G 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

1"

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 11
5

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 11
6

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 11
7

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 11
8

𝑥 𝑧
𝜙<=(𝑥)

𝜙(𝑧)

𝑝M(𝑥) 𝑝N(𝑧)
𝑝>(𝜙<= 𝑥) det

𝜕𝜙<= 𝒙
𝑑𝒙

𝑝> 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

<=

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
#
𝑝 𝑥 = max

#
𝑝4 𝜙#23(𝑥) det

𝜕𝜙#23 𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points
• Sample noise: 𝑧~𝑝(𝑧)
• Transform: 𝜙 𝑧 = 𝑥

11
9

Example Normalizing Flow: Real NVP 12
0

• Data vector 𝑥 =
𝑥5
𝑥6

• Transformation

𝜙 𝑧 :
𝑥5
𝑥6 = 𝜙5(𝑧)

𝜙6(𝑧)
=

𝑧5
𝑧6 ∗ 𝑓 𝑧5 + 𝑔(𝑧5)

𝜙75 𝑥 :
𝑧5
𝑧6 = 𝜙575(𝑥)

𝜙675 𝑥
=

𝑥5
𝑥6 − 𝑔 𝑥5 /𝑓(𝑥5)

• Determinant:

det
𝜕𝜙 𝒛
𝑑𝒛 = det

1 0
𝜕𝜙?(𝑧)
𝑑𝑧=

𝑓(𝑧=)
= 𝑓(𝑧?)

Functions f() and g()
are neural networks

Jacobian is
lower triangular

Example Normalizing flow 12
1

𝜙(𝑧)

𝑧"

𝑧.

Applications: Sampling in Lattice QCD 12
2

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

