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‘The Plan /

* From Logistic Regression to Neural Networks

e Basics of Neural Networks
* Deep Neural Networks
e Convolutional Neural Networks

* Recurrent Neural Networks
— And a bit about Graph Neural Networks

e AutoEncoders and Generative Models



Sequential Data /

* Many types of data are not fixed in size

* Many types of data have a temporal or
sequence-like structure

— Text
— Video
— Speech
— DNA

* MLP expects tixed size data

* How to deal with sequences?



Sequential Data

* Given a set X, let S(X) be the set of sequences,
where each element of the sequence x; € X

— X could reals RM, Integers 7M™ etc.

— Sample sequence x = {xq, X5, ..., X7}

* Tasks related to sequences:

— Classification SO > |XV ip; =
1}
— Generation f: R% - S(X)

— Seq.-to-seq. translation f: S(X) = S(Y)

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent States /

* Input sequence x € S(R™) of wvarzable length T (x)

* Standard approach: use recurrent model that
maintains a recurrent state h; € R? updated at each

time step t. Fort =1, ...,T(x):
hiy1 = o(x¢, he; 0)

— Simplest model:

¢(xt, ht, W, U) — O-(Wxt + Uht)

* Predictions can be made at any time t from the
recurrent state

Y: = Y(hs; 0)

Credit: F. Fleuret



https://fleuret.org/dlc/

Recurrent Neural Networks
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https://fleuret.org/dlc/

Recurrent Neural Networks
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https://fleuret.org/dlc/

Recurrent Neural Networks
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https://fleuret.org/dlc/

Recurrent Neural Networks
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https://fleuret.org/dlc/

Recurrent Neural Networks

Prediction per sequence element

N

Credit: F. Fleuret

Although the number of steps T'(x) depends on x, this is a standard
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computational graph and automatic differentiation can deal with 1t as
usual. This 1s known as “backpropagation through time” (Werbos, 1988)


https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Stacked RNN
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Stacked RNN
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Two Stacked LSTM Layers
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Bi-Directional RNN
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Forward in time RNN Layer
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\ Gating A

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

Credit: Gilles Louppe


https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Long Short Term Memory (LSTM)

* Gating:

— network can grow very deep,

in time = vanishing gradients.

T

el

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through

squashing non-linearity.

 LSTM:

— Add internal state separate
from output state

— Add input, output, and
forget gating
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Credit: Gilles Louppe


https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Comparison on Toy Problem

S

Learn to recognize palindrome
Sequence size between 1 to 10

X Y
(1,2,3,2,1) 1
(2,1,2) 1
(3,4,1,2) 0
(0) 1
(1,4) 0

Slide credit: G. Louppe
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https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples

17

Y. Wu et al, 2016

Neural machine translation
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https://arxiv.org/abs/1609.08144

Examples

MariFlow - Self-Driving Marlo Kart w/Recu

Thin /35 a Saurrers
neural network that I've
trained to play Mmario
Kart like me. This NN is
very different from
mMarI/o, because its goal
§is not to win, but rather
i to predict what
icontroller inputs I would
use in any given
situation. The display on
the bottom shows what the
neural network sees, and
its internal state and
controller predictions.
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Self-driving Mario Kart with RNN: YouTube video



https://youtu.be/Ipi40cb_RsI

Examples

S

Text-to-speech synthesis

Mel Spectrogram
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Shen et al., 2017

Bidirectional
LSTM



https://arxiv.org/abs/1712.05884

Graph Data




Graph Data /

h

* Sequential data has single (directed) connections
from data at current time to data at next time

* What about data with more complex dependencies

Image Credit: |. Henrion Image credit: N. Wang et al., 2018


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

\ Graphs A

Edge

|

Vertex / node

* Adjacency matrix: 4;; = 6(edge between vertex i and j)
e Each node can have teatures

* Each edge can have features, e.g. distance between nodes

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

.

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Image Credit: |. Henrion



https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

m|F
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Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

~t — f(ht—l)
mJ—)I — O-(AUmt)

ht = GRU(h' 1, X;im

Image Credit: |. Henrion
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https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h «<—Embed(x)

fort=1,..., T do
m < Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples o

Quantum chemistry with graph networks
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https://www.nature.com/articles/ncomms13890

Examples

Learning to simulate physics with graph networks
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Learned simulator, sy

G
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Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dy, and a fixed update procedure.
(b) The ds uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X . (¢) The ENCODER
constructs latent graph, G°, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent
graphs, G*, ..., G™. (e) The DECODER extracts dynamics information, Y, from the final latent graph, G*.

Sanchez-Gonzalez et al. 2020


https://arxiv.org/abs/2002.09405

Beyond Regression and Classification



Beyond Regression and Classification /

* Not all tasks are predicting a label from features, as in
classification and regression

* May want / need to explicitly model a high-dim. signal
— Data synthesis / simulation
— Density estimation
— Anomaly detection
— Denoising, super resolution

— Data compression

* Often don’t have labels = Unsupervised Learning

* Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe the data



32

Modeling Data and Meaningful Degrees of Freedom
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Fleuret, Deep Learning Course



https://fleuret.org/dlc/
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Modeling Data and Meaningful Degrees of Freedom
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Fleuret, Deep Learning Course



https://fleuret.org/dlc/
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Modeling Data and Meaningful Degrees of Freedom

Latent space &

W

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

35

Modeling Data and Meaningful Degrees of Freedom
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Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Modeling High Dimensional Data A

* Must first determine the question we want to ask,
and formulate an appropriate loss function
— Loss function encodes the quality of model prediction

— Parameterize models with neural networks

* WIill have many of the same theoretical and
practical 1ssues as 1n classification and regression

— What 1s the right class and structure of the model
(CNN, RNN;, graph, etc.)?

— How do we stably optimize the loss w.r.t. parameters?



.

Autoencoders



Meaningful Representations A

* How can we find the “meaningtul degrees of
freedom” in the data?

* Dimensionality Reduction / Compression

— Can we compress the data to a latent space with smaller
number of dimensions, and still recover the original data
from this latent space representation?

— Latent space must encode and retain the important
information about the data

— Can we learn this compression and latent space



Autoencoders A

* Autoencoders map a space to 1itself through a compression,
x — z — X, and should be close to the identity on the data

— Data: x € X Latent space: z € F

— Encoder: Map from X to a lower dimensional latent space F

 Parameterize as neural network fg(x) with parameters 6

— Decoder: Map from latent space F back to data space X

* Parameterize as neural network gy, (z) with parameters 1



Autoencoders A

* Autoencoders map a space to 1itself through a compression,
x — z — X, and should be close to the identity on the data

— Data: x € X Latent space: z € F

— Encoder: Map from X to a lower dimensional latent space F

 Parameterize as neural network fg(x) with parameters 6

— Decoder: Map from latent space F back to data space X

* Parameterize as neural network gy, (z) with parameters ¥

* What is the latent space? What are f(x) and g(z)?

— Choose a latent space dimension D

— Learn mappings f(x) to representation of size D,

and back with g(z)



Autoencoder Loss /

* Loss: mean reconstruction loss ((MSE) between data
and encoded-decoded data

1 2
L(6, ) = NZHxn — gy (fo (xn)) ||

* Minimize this loss over parameters of encoder (0)

and decoder ().



Autoencoder Loss A

* Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

1 2
L(6, ) = NZHxn — gy (fo (xn)) ||

* Minimize this loss over parameters ot encoder (0)

and decoder ().

* NOTE:if fg(x) and g(z) are linear, optimal
solution given by Principle Components Analysis



Autoencoder Mappings

S

fx\b

— Latent space F#

Original space &

* If the latent space 1s of lower dimension, the

autoencoder has to capture a “good”
parametrization, and in particular dependencies
between components

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Deep Autoencoder A

X =— |f@ -»f(z)-»-»z» -» g = g — X

* When fy and gy, are multiple neural network layers,

can learn complex mappings between X and F
— fp and gy, can be Fully Connected, CNNs, RNNs, etc.

— Choice of network structure will depend on data



Deep Autoencoder A

X =—— fg - 7 = gl/) —_— X

/

* When fg and g,, are multiple neural network layers,

can learn complex mappings between X and F
— fp and gy, can be Fully Connected, CNNs, RNNS, etc.

— Choice of network structure will depend on data
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Deep Convolutional Autoencoder
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https://fleuret.org/dlc/

Interpolating in Latent Space

Fleuret, Deep Learning Course

a €[0,1], £(x,x';a) =g((1 - a)f(x) +af(x)).

! f(x)
/\ oS
g \
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Autoencoder interpolation (d = 8)
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https://fleuret.org/dlc/

Can We Generate Data with Decoder? A

* Can we sample 1n latent space 1
and decode to generate data? b /—\

S

Latent space &

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Can We Generate Data with Decoder? A

* Can we sample 1n latent space 1
and decode to generate data? b /—\

— Latent space &

Original space &

* What distribution to sample

from 1n latent space? Autoencoder sampling (d = 16)

_ - - Q?251?54J@5'5/
Try Gau;smn (\leth mean and 0236239553146
variance rrom data : 3546008245433

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Can We Generate Data with Decoder? A

* Can we sample 1n latent space 1
and decode to generate data? b /_\

— Latent space &

Original space &

* What distribution to sample

from 1n latent space? Autoencoder sampling (d = 16)
— Try Gau;sian Zlvith mean and 3 Z i f ; Z, ; '; g g :(’ Z
variance rrom data :6}9/994’9412'5’35

* Doesn’t work! Don’t know the right latent space density

— Don’t have model of where the encoder encodes!

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Generative Models



Generative Models A

e (Generative models aim to:

— Learn a distribution p(x) that explains the density of
the data

— Draw samples ot plausible data points

* Explicit Models
— Can evaluate the density p(x) of a data point x

* Implicit Models

— Can only sample from p(x), but not evaluate density



Latent Variable Models A

a0

* Observed random variable x depends on unobserved
latent random variable z

— Interpret z as the causal factors for x

* Joint probability: p(x, z) = p(x|z)p(2)
* p(x|z) is a stochastic generation process from z = x

p(X|Z)p(z)
p(x)

* Inference from posterior: p(z|lx) =

— Usually can’t compute marginal p(x) = [ p(x|z)p(2)dz



Autoencoder: Deterministic to Probabilistic A

* Consider probabilistic relationship between data and
latent variables

x,z ~p(x,z) =plx|z)p(z)

/\

Decoding data x Prior over latent space
from latent z



From Deterministic to Probabilistic Autoencoder A

* Consider probabilistic relationship between data and
latent variables

x,z~p(x,z) =plx|z)p(z)

* Autoencoding

x - q(z]x) = 27 p(x|z)

— Choose simple prior distribution

— Encoder: Learn what latents can produced data: q(z|x)

— Decoder: Learn what data is produced by latent: p(x|z)



Probabilistic Picture
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Probabilistic Picture %
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Reconstruction Loss: Maximize expected likelihood of
decoding x from encodings of x

1
Lyeco = IE':z~q(z|x) llog p(x|2)] = N z logp(x|z;)

zi~q(z|x)



Variational Autoencoder A

1
Lyeco = NZz~q¢(z|x) log pe (x|z;)

* Prior p(z) describes the latent space distribution,
need to ensure the encoder is consistent with prior

f y

7

Latent space #

Original space &



Variational Autoencoder A

1
* Lyeco = NZz~q¢(z|x) log pg (x[z;)

* Prior p(z) describes the latent space distribution,
need to ensure the encoder is consistent with prior

e Constrain difference between distributions with

Rullback—-Leibler divergence

q(z|x) q(z|x)
p(z)

p(z) dz

log ]= jq(zlx) log

Dirlq(zlx)Ip(2)] = Eq(z|x)

— Dk1[gqlp] = 0 andisonly 0 whenq =p



Variational Autoencoder A

1
* Lieco = NZz~q¢(z|x) log pe (x|z;)

* Prior p(z) describes the latent space distribution,
need to ensure the encoder is consistent with prior

* VAE full objective

%}%XL(H P) = max [Eqw(zpc) [log pe (x|2)] — DKL[Q¢(Z|X)|P(Z)]]



Variational Autoencoder A

1
Lyeco = NZz~q¢(z|x) log pe (x|z;)

* Prior p(z) describes the latent space distribution,
need to ensure the encoder is consistent with prior

* VAE full objective

Hel?/)XL(H P) = max [Eqw(z|x) [log pge (x|2)] — DKL[Q¢(Z|X)|P(Z)]]

NOTE: there 1s a formal derivation using varzational inference
— Relies on the fact that logp(x) > Eqw(ZIX) [logp(x|z)] — Dg, [qw(zlx)|p(z)] = ELBO(x; )
— @y (2]x) is a variational approximation of posterior p(z|x)
— Maximize ELBO w.r.t. ¢ to get closer to p(x)




How do we design Encoder and Decoder A

* C(lassification / regression models make single
predictions...

How to model a conditional density p(a|b) ?



How do we design Encoder and Decoder

* C(lassification / regression models make single
predictions...

How to model a conditional density p(a|b) ?

* Assume a known form of density, e.g. normal
p(alb) = N (a; u(b),o(b))

— Parameters of density depend on conditioned variable



How do we design Encoder and Decoder A

* C(lassification / regression models make single
predictions...

How to model a conditional density p(a|b) ?

* Assume a known form of density, e.g. normal
p(alb) = N (a; u(b),o(b))

— Parameters of density depend on conditioned variable

* Use neural network to model density parameters

p(alb =b;)  p(alb=Dby)

Aa(bl)

u(bq) a

@,
I
s
p(alb)




The Decoder A

e Decoder

— Neural network with parameters 6

— Input z = output estimate of Gaussian Ug(z) , gg(2)

* Likelihood of a data point x

(x — Ug (Z))Z

logp(x|z) = —logag(z) — 5 (2)? + const




The Encoder A

* Encoder
— Neural network with parameters i

— Input x = outputs estimate of Gaussian i, (x) , gy, (x)

e For reconstruction loss:

— Need a value of z to evaluate decoder!

— Need to gradient through z to encoder parameters

) qy(zi|x)
max L (6,1) = max i log pp (x[2) - 1°g[ p(2)
Eiay 20




Reparameterization trick A

* For z~pg(2), rewrite z as a function of a random
variable € whose distributions p(€) does not

depend on 6

— Gaussian Example:

z~NWu,0) - z=o*xe+u where e~N(0,1)

e VAE Loss

qy (zi|x)
p(z;)

ng’?px LB, yY) = rg’?px Z )logpg(x|zl- =ex*xay (x) + ,ulp(x)) — log[
e~p(€



Examples
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Higgins et al., 2017


https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Examples

(a) (b)

SMILES input O
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Neural Network
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REPRESENTATION f(z) 5 5
(Latent Space) = i i : E
PROPERTY E ' E

PREDICTION :

DECODER '

Neural Network

SMILES output ©
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Most Probable Decoding
argmax p(*z)

Design of new molecules with desired chemical properties.
(Gomez-Bombarelli et al, 2016)

Slide credit: G. Louppe


https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

Another Way To Do Generative Modeling... A




Another Way To Do Generative Modeling... /

* Another approach to generative modeling 1s to
formulate the task as a two player game

* One player tries to output data that looks as real
as possible

* Another player tries to compare real and fake data

* In this case we need:
— A generator that can produce samples

— A measure of not too far from the real data



Generative Adversarial Network (GAN) /

* Generator network gg(z) with parameters 6

— Map sample from known p(z) to sample in data space

x =gg(z) z~p(2)

— We don’t know what the generated distribution pg () is,
but we can sample from it = Implicit Model


https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Generative Adversarial Network (GAN) /

* Generator network gg(z) with parameters 6

— Map sample from known p(z) to sample in data space

x =gg(z) z~p(2)

— We don’t know what the generated distribution pg () is,
but we can sample from it = Implicit Model

* Discriminator Network dg(x) with parameters ¢

— Classifier trained to distinguish between real and fake data
— Classitier is learning to predict p(y = real | x)

— This classifier 1s our measure of not too far from the real data


https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

/.

Vv

“reali'

What D wants

Hfa kell

W

* Generator’s goal 1s to produce fake data that tricks
the discriminator to think 1t 1s rea/ data

* Discriminator wants to miss-classity data as real or
tfake as little as possible

* The setup 1s adversarial because the two networks
have opposing objectives

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

GAN Objective /

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)



GAN Objective A

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

* For a fixed generator, can train discriminator by
minimizing the cross entropy
N
1

L(¢) = — 557 D |vilogds(w:) + (1= ) log(1 — dy (&) )|



GAN Objective

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

* For a fixed generator, can train discriminator by
minimizing the cross entropy

N

1 " ~
5N [yz log d¢(xi) + (1 — g;) log(1 — dﬁb(xi) )}
1=1

L() = -

_ _% > [log dg (i) +log(1 — dg(ge(2:)) )}

1=1



GAN Objective A

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

* For a fixed generator, can train discriminator by
minimizing the cross entropy

D) = — 50 O [wilogda(e) + (1— ) log(1 — dy (i) )
= —% Z [log dg(x;) + log(1 — dg(ge(2i)) )}

= —Forpyon(2) {log d¢(az)} —E.p2) {log(l — dy(g0(2)) )}



GAN Objective A

* However, generator 1sn’t fixed... have to train it!



GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )



GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low



GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low

* So our optimization goal becomes:

0" = arg m@in max Vo, 0)



GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low

. . . NOTE: can prove that
* So our optimization goal becomes: minimax solution

corresponds to generator
that perfectly reproduces

9* — al“g mln 111 aX ‘/v(¢7 9) data distribution
9 ¢ qo*(X) = Paata(x)



GAN Training Goodfellow et. al. 2014A

* Alternating Gradient descent to solve the min-max problem:

oV 3(dg) dgs
Yad ag 06
oV d(dg)
ad do

0« 6—yVeV(p,0) =60 —

¢ —P—yVypV(p,0)=¢—vy

* For each 0 step, take k steps in ¢ to keep discriminator near
optimal

Data distribution
Model distribution

N I3} (3]

...............................

° \ . y .
. L. . » .
. . .
. . . .
ce-eu

e

T L TN T

Poorly fit model After updating D After updating G =~ Mixed strategy equilibrium



https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Training Example
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MODEL OVERVIEW GRAPH "
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Gradients
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I
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\
\
\= -
Fake /'
L oh e
=
Samp]es Discriminator Prediction of
Samples
Gradients

Discriminator
S

LAYERED DISTRIBUTIONS METRICS
3 . [l Discriminator's Loss
[l Generator's Loss
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JS Divergence (by grid)
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0 2000 4000

Each dot is a 2D data sample: real samples; fake samples.

Background colors of grid cells represent discriminator's classifications.
Samples in green regions are likely to be real; those in purple regions likely fake.

Opacity encodes density: darker purple means more samples in smaller area.

Pink lines from fake samples represent gradients for generator.
& This sample needs to move upper right to decrease generator's loss.

GAN Lab Demo



https://poloclub.github.io/ganlab/

Examples

Goodfellow et. al., 2014

Not so good

Goodfellow 2016

Radford et al, 2015


https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges A

* Oscillations without convergence: unlike standard loss
minimization, alternating stochastic gradient descent has
no guarantee of convergence.

* Vanishing gradients: if classifier 1s too good, value
function saturates = no gradient to update generator

* Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution modes.

* Difficult to assess performance, when are generated data
good enough?

bd - i m
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Slide credit: G. Louppe Mode collapse (Metz et al, 2016)


https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

Improving GANS

* Standard GANS compare real
and take distributions with
Jensen-Shannon Divergence,
“vertically”

* Wasserstein-GAN (Arjovsky
et al, 2017) compares
“horizontally” with
Wasserstein-1 distance
(a.k.a. Earth Movers distance)

* Substantially improves

vanishing gradient and mode
collapse problems!

0.40 -
035 -
0.30 -
0.25 -
0.20 -
015 -
0.10 -
0.05 -

0.00 -

0.4+

0.2 +

(Arjovsky et al, 2017)

— Density of real
— Density of fake

WGAN Critic

—— GAN Discriminator ]

0.0
~
-0.2f — Vanishing gradients
in regular GAN
-0.4 > - . x
-8 -6 -4 -2 0 2 4 6 8

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.

As we can see,

the discriminator

ishi

of a minimaz GAN saturates and results in vanis
gradients. Our WGAN critic provides very clean gradients on all parts of the space.

ng


https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

WGAN Examples
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ky et al, 2017)



https://arxiv.org/abs/1701.07875v3

Scaling Up

G Latent Latent

LA

.i | Reals .. i Reals

D

Progressive GAN

Latent

1024x1024

. : Reals
¥

Y
1024x1024

Training progresses

(Karras et al, 2017)



Scaling Up

StyleGAN v2



Applications: Image-to-Image Translation with CycleGAN A

* p(z) doesn’t have to be random noise

* CycleGAN uses cycle-consistency loss in addition to GAN loss
— Translating from A=>B—2> A should be consistent with original A

Monet _ Photos Zebras T Horses Summer £_ Winter

Van Gogh




Applications: Text-to-Image Synthesis with StackGAN

93

A small bird A small yellow  This small bird
The bird is A bird with a This small with varying bird with a has a white
Text Thisbirdisred  shortand mediumorange  black bird has shades of black crown breast, light
dese e'xt'on and brown in stubby with bill white body  a short, slightly  brown with and a short grey head, and
esenph color, with a yellowonits  gray wingsand curvedbilland  whiteunderthe black pointed  black wings
stubby beak body webbed feet long legs eyes beak and tail
64x64 ¥
GAN-INT-CLS
128x128
GAWWN
256x256

StackGAN-v1

-

- 4

Fig. 3: Example results by our StackGAN-vl, GAWWN [29], and GAN-INT-CLS [31] conditioned on text descriptions from CUB test set.

(Zhanget al, 2017)




Conclusions A

* Deep neural networks are an extremely powertul
class of models

* We can express our inductive bias about a system
in terms of model design, and can be adapted to a
many types ot data

* Even beyond classification and regression, deep
neural networks allow for powerful model
schemes such as Variational Autoencoder and
Generative adversarial Networks
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S

* Autoencoders learn the latent space, but we don’t
know what 1s the latent space distribution

* Autoencoder prescribes a deterministic
relationship between data space and latent space

* One set of “meaningful degrees ot freedom” can
only describe one data space point



.

Denoising Autoencoder



Denoising Autoencoders A

e Learn a mapping from corrupted data space X
back to original data space

— Mapping ¢,, (i) =X

— ¢, will be a neural network with parameters w

e J.oss:

1
L =2 [l = b G + €0
/

Perturbation, e.g. Gaussian noise



A

Denoising Autoencoders Examples

4)
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ning Course

Fleuret, Deep Lear



https://fleuret.org/dlc/

Deep Sets



What if our data has no time structure?

* Data may be variable 1n length but have no
temporal structure = Data are sets of values

* One option: If we know about the data domain,
could try to impose an ordering, then use RNN

* Better option: use system that can operate on
varlable length sets in permutation invariant way

— Why permutation invariant = so order doesn’t matter



Deep Sets




Deep Sets
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Deep Sets
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Deep Sets

— &

X2

Permutation invariant

/ operation: Sum, Max, ...

— &

Xt




Deep Sets
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Examples

Outlier detection

black hair &
brown hair

M. Zaheer et. al 2017

Medical Imaging

With more complex architecture
-

& AN EE
R R atann, . B

Figure 5. (a) H&E stained histology image. (b) 27x27 patches
centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Heatmap: Every patch from (b)
multiplied by its corresponding attention weight, we rescaled the
attention weights using aj, = (ax —min(a))/(max(a) —min(a)).

M. llse et al., 2018


https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

Explicit Density Estimation with Normalizing Flows



Explicit Density Estimation

* In VAE and GAN we can learn to sample from
the distribution...

* Is there a way to learn the explicit density p(x) ?



Reminder: Calculus Change of Variables

ff(g(x)) a‘zix) dx = [ f(uw)du where u = g(x)

Multivariate:
I flg(x) ‘det 29O gx = [ f(u)du where u = g(x)

dx
Determinant of Jacobian
of the transformation

— Change of volume



Change of Variables in Probability A

* If f is continuous, invertible, differentiable, and

x = f71(2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

Hz

1 KX 5

et (222)

Z

The term accounts for the local stretching of space




Change of Variables with Neural Networks

* If f is continuous, invertible, differentiable, and

x = f71(2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

* x = data we want to model, Z = known noise

* ¢g(z) will be a neural network with parameters 6

— Must be continuous, 1nvertible, differentiable

* Output of ¢ is a potential sample x

— Learn the right ¢: adjust weights 6 to maximize data
probability (formula above)



Change of Variables with Neural Networks i

* If f is continuous, invertible, differentiable, and

x = f71(2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

* x = data we want to model, Z = known noise

¢ (z) neural network ®~1(x) inverse
— Input = asample of noise <= — Input = asample X
— QOutput = a sample of X — Qutput = a sample of noise

* Calculate the probability of a sample using the formula above



Normalizing Flows

&

20N N

Slide credit: G. Kanwar

¢ (2)

Px(x) = p,(2)

dp(z)
det ( iz

p(x)

W

;



https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

p(2) A

Easily sampled

Slide credit: G. Kanwar

P(2) -

Invertible
&
Tractable
Jacobian

p(x)

Approximates
desired dist.


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

p(2) A

Easily sampled

Slide credit: G. Kanwar

g

¢ (Z) Invertible
-~ &
Tractable
Jacobian
8i ‘ 8i+1
| —
J
%

Many simple layers

composed to produce ¢

Approximates
desired dist.


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows i

¢ (Z) |nvertib|e\
-~ &
b Tractable X
Jacobian '\
p(z) M\ p(x)
| . -
- =
-
[ 3
*:
[ =
'S
‘ .
Faslly sampled R iod et

Slide credit: G. Kanwar


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

¢~ (x)
X "z
| (2) |
: - :
| Pz (67 (X)) ‘det <a¢ dx(x)> |
px(x) < ~ pL(2)

-1
p,(z) |det (ad)(Z))

dz




Normalizing Flows Training

e LLearn 68 with maximum likelihood

max p(x) = maxp,(¢g " (x))

— Gradient descent on 6

det(

0y (x)

dx

— Find transformation s.t. data 1s most likely

e Benefits once trained

— Can evaluate p(x) for any point X

— Can generate “new” data points

* Sample noise: z~p(z)

* Transform:

P(z) = x

|




Example Normalizing Flow: Real NVP 1

X1
e Data vector x = ( )

Functions f() and g()

* Transformation are neural networks
¢(2): (2) - (izgg) - (Zz * f(le)1+ 9(21))
» 1 _ () 1
¢~ (x) (zz) - <¢2 1(3;)) B ((Xz g(x1))/f(x1))

Jacobian is

/ lower triangular
1 0

dp(z) _ 0
det( o )-det(( ‘ZZZEZ)) f(z 1)> f(z2)

e Determinant:




Example Normalizing flow

Standard Normal p(xy1)
60 - 0.35
50 - 0.30
0.25
40 1
0.20
30 -
Samples from p(x;, x3) 0.15
. 2.0 .S .
M m 0.10
QT gy
10 % ‘* ]
1 o T s ’ \’ ~ 0.05
()
0- 0.5 # 0.00 .
-2 0
P[> < e
Standard Normal —05
60 p(xz)
-1.0
0.35
-15
0.30
_2.0 T T T T T T T T T
-20 -15 -10 -05 00 05 10 15 2.0 0.25 -
x1
0.20
0.15
0.10 -
0.05
0.00
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Applications: Sampling in Lattice QCD .

- PO - Parameterize flow using Real
— - - - -

NVP coupling Iayers < Each layer contains
¢ arbitrary neural nets

4 Training step ‘\

Draw samples from model

| W
Compute loss function

| Save trained
Gradient descent model
\

Desired accuracy?

' |y . Markov chain using
Cd B R 3 samples from model <

generating samples is
"embarrassingly parallel"

Slide credit: G. Kanwar


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

