Introduction to Deep Learning: Lecture I

Michael Kagan

SLAC

IN2P3 School of Statistics 2021
January 26, 2021

Long History of Neural Networks

Perceptron

AlphaStar

Modern Neural Networks

People are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization.

- Yann LeCun, 2018

Modern Neural Networks

People are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization.

- Yann LeCun, 2018
- Non-linear operations of data with parameters
- Layers (set of operations) designed to perform specific mathematical operations
- Chain together layers to perform desired computation
- Train system (with examples) for desired computation using gradient descent

Modern Neural Networks

People are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization.

- Yann LeCun, 2018

An increasingly large number of people are defining the networks procedurally in a data-dependent way (with loops and conditionals), allowing them to change dynamically as a function of the input data fed to them. It's really very much like a regular program, except it's parameterized

- Yann LeCun, 2018

The Plan

- Deep Learning is a HUGE field
- O(10,000) papers submitted to NeurIPS 2020 Conference
- I'm will condense some parts of what you would find in some lectures of a Deep Learning course
- Highly recommend taking the time to go more slowly through lectures from a class. Online-available Recommendations:
- Francois Fleuret course at University of Geneva
- Gilles Louppe course at University of Liege
- Yann LeCun \& Alfredo Canziani course at NYU

The Plan

- From Logistic Regression to Neural Networks
- Basics of Neural Networks
- Deep Neural Networks
- Convolutional Neural Networks
- Recurrent Neural Networks
- And a bit about Graph Neural Networks
- AutoEncoders and Generative Models

Reminder: Empirical Risk Minimization

- Framework to design learning algorithms
- $\mathrm{L}(\cdot)$ is a loss function comparing prediction $\mathrm{h}(\cdot)$ with target y
$-\Omega(\mathbf{w})$ is a regularizer, penalizing certain values of \mathbf{w}
- λ controls how much penalty... a hyperparameter we have to tune
- Learning is cast as an optimization problem

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathrm{y}) \sim \mathrm{p}(\mathbf{X}, \mathrm{Y})$
- Features: $\mathbf{x} \in \mathbb{R}^{\mathrm{m}}$
- Labels: $\quad y \in\{0,1\}$

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathrm{y}) \sim \mathrm{p}(\mathbf{X}, \mathrm{Y})$
- Features: $\mathbf{x} \in \mathbb{R}^{\mathrm{m}}$
- Labels: $\quad y \in\{0,1\}$
- Breakdown the joint distribution:

$$
p(x, y)=p(x \mid y) p(y)
$$

Likelihood:
Distribution of features

Prior:
Probability of each class for a given class

Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(\mathbf{x}, \mathrm{y}) \sim \mathrm{p}(\mathbf{X}, \mathrm{Y})$
- Features: $\quad \mathbf{x} \in \mathbb{R}^{\mathrm{m}}$
- Labels: $\quad \mathrm{y} \in\{0,1\}$
- Breakdown the joint distribution:

$$
p(x, y)=p(x \mid y) p(y)
$$

- Assume likelihoods are Gaussian

$$
p(x \mid y)=\frac{1}{\sqrt{(2 \pi)^{m}|\Sigma|}} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{y}\right)\right)
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})
$$

- Want to build a classifier to predict the label y given and input \mathbf{x}

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
\begin{array}{rlrl}
p(y=1 \mid \mathbf{x}) & =\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})} & \text { Bayes Rule } \\
& =\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x} \mid y=0) p(y=0)+p(\mathbf{x} \mid y=1) p(y=1)} & & \quad \begin{array}{l}
\text { Marginal } \\
\text { definition }
\end{array}
\end{array}
$$

Predicting the Class

- Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$
p(y=1 \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x})}
$$

$$
\begin{aligned}
& =\frac{p(\mathbf{x} \mid y=1) p(y=1)}{p(\mathbf{x} \mid y=0) p(y=0)+p(\mathbf{x} \mid y=1) p(y=1)} \\
& =\frac{1}{1+\frac{p(\mathbf{x} \mid y=0) p(y=0)}{p(\mathbf{x} \mid y=1) p(y=1)}} \\
& =\frac{1}{1+\exp \left(\log \frac{p(\mathbf{x} \mid y=0) p(y=0)}{p(\mathbf{x} \mid y=1) p(y=1)}\right)}
\end{aligned}
$$

Logistic Sigmoid Function

Predicting Classes with Gaussian Likelihoods

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\log \frac{p(\mathbf{x} \mid y=1)}{p(\mathbf{x} \mid y=0)}+\log \frac{p(y=1)}{p(y=0)}\right)
$$

Predicting Classes with Gaussian Likelihoods

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\log \frac{p(\mathbf{x} \mid y=1)}{p(\mathbf{x} \mid y=0)}+\log \frac{p(y=1)}{p(y=0)}\right)
$$

- For our Gaussian data:

$$
\begin{aligned}
= & \sigma(\log p(\mathbf{x} \mid y=1)-\log p(\mathbf{x} \mid y=0)+\text { const. }) \\
= & \sigma\left(-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)+\frac{1}{2}\left(\mathbf{x}-\mu_{0}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{0}\right)\right. \\
& + \text { const. })
\end{aligned}
$$

$$
=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right)
$$

What did we learn?

- For this data, the log-likelihood ratio is linear!
- Line defines boundary to separate the classes
- Sigmoid turns distance from boundary to probability

Logistic Regression

- What if we ignore Gaussian assumption on data?

$$
\text { Model: } \quad p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \equiv h(\mathbf{x} ; \mathbf{w})
$$

- Farther from boundary $\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=0$, more certain about class
- Sigmoid converts distance to class probability

Logistic Regression

$$
\begin{aligned}
p(y=1 \mid \mathbf{x}) & =\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \\
& =\frac{1}{1+e^{-\mathbf{w}^{T} \mathbf{x}}-\mathbf{b}}
\end{aligned}
$$

This unit is the main building block of Neural Networks!

Logistic Regression

- Computational Graph of function
- White node = input
- Red node = model parameter
- Blue node = intermediate operations

This unit is the main building block of Neural Networks!

Logistic Regression

- What if we ignore Gaussian assumption on data?

Model: $\quad p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \equiv h(\mathbf{x} ; \mathbf{w})$

- With $p_{i} \equiv p\left(y_{i}=y \mid \boldsymbol{x}_{i}\right)$
$P\left(y_{i}=y \mid x_{i}\right)=\operatorname{Bernoulli}\left(p_{i}\right)=\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}= \begin{cases}p_{i} & \text { if } y_{i}=1 \\ 1-p_{i} & \text { if } y_{i}=0\end{cases}$
- Goal:
- Given i.i.d. dataset of pairs ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) find \mathbf{w} and b that maximize likelihood of data

Logistic Regression

- Negative log-likelihood
$-\ln \mathcal{L}=-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}$

Logistic Regression

- Negative log-likelihood
$\begin{aligned} &-\ln \mathcal{L}=-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \\ &=-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right) \\ & \text { binary cross entropyloss function! }\end{aligned}$

Logistic Regression

- Negative log-likelihood

$$
\begin{aligned}
-\ln \mathcal{L} & =-\ln \prod_{i}\left(p_{i}\right)^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \\
& =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right) \\
& =\sum_{i} y_{i} \ln \left(1+e^{-\mathbf{w}^{T} \mathbf{x}}\right)+\left(1-y_{i}\right) \ln \left(1+e^{\mathbf{w}^{T} \mathbf{x}}\right)
\end{aligned}
$$

- No closed form solution to $w^{*}=\arg \min _{w}-\ln \mathcal{L}(w)$
- How to solve for \mathbf{w} ?

How to Minimize Loss $\mathcal{L}(\theta)$? Gradient Descent

- Gradient Descent:

Make a step $\theta \leftarrow \theta-\eta v$ in direction v with step $\operatorname{size} \gamma$ to reduce loss

- How does loss change in different directions?

Let λ be a perturbation along direction v

$$
\left.\frac{d}{d \lambda} \mathcal{L}(\theta+\lambda v)\right|_{\lambda=0}=v \cdot \nabla_{\theta} \mathcal{L}(\theta)
$$

- Then Steepest Descent direction is: $v=-\nabla_{\theta} \mathcal{L}(\theta)$

Gradient Descent

- Minimize loss by repeated gradient steps
- Compute gradient w.r.t. current parameters: $\nabla_{\theta_{i}} \mathcal{L}\left(\theta_{i}\right)$
- Update parameters: $\quad \theta_{i+1} \leftarrow \theta_{i}-\eta \nabla_{\theta_{i}} \mathcal{L}\left(\theta_{i}\right)$
$-\eta$ is the learning rate, controls how big of a step to take

Stochastic Gradient Descent

- Loss is composed of a sum over samples:

$$
\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}\left(y_{i}, h\left(x_{i} ; \theta\right)\right)
$$

- Computing gradient grows linearly with N !
- (Mini-Batch) Stochastic Gradient Descent
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent

Batch gradient descent

Stochastic gradient descent

Stochastic Gradient Descent

- Loss is composed of a sum over samples:

$$
\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}\left(y_{i}, h\left(x_{i} ; \theta\right)\right)
$$

- Computing gradient grows linearly with N !
- (Mini-Batch) Stochastic Gradient Descent
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased \rightarrow on average it moves in correct direction
- Tends to be much faster the full gradient descent
- Several updates to SGD, like momentum, ADAM, RMSprop to
- Help to speed up optimization in flat regions of loss
- Have adaptive learning rate
- Learning rate adapted for each parameter
- ...

Step Sizes

- Too small a learning rate, convergence very slow
- Too large a learning rate, algorithm diverges

Small Learning rate

Gradient Descent

- Logistic Regression Loss is convex
- Single global minimum
- Iterations lower loss and move toward minimum

Logistic Regression Example

Adding non-linearity

- What if we want a non-linear decision boundary?

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

$$
\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

$$
\phi(\mathbf{x} ; \mathbf{u}) \quad \mathbb{R}^{\mathrm{m}} \rightarrow \mathbb{R}^{\mathrm{d}}
$$

- Where \mathbf{u} is a set of parameters for the transformation

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

$$
\phi(\mathbf{x} ; \mathbf{u}) \quad \mathbb{R}^{\mathrm{m}} \rightarrow \mathbb{R}^{\mathrm{d}}
$$

- Where \mathbf{u} is a set of parameters for the transformation
- Combines basis selection and learning
- Several different approaches, focus here on neural networks
- Complicates the optimization

Neural Networks

- Define the basis functions $\mathrm{j}=\{1 \ldots \mathrm{~d}\}$

$$
\phi_{\mathrm{j}}(\mathbf{x} ; \mathbf{u})=\sigma\left(\mathbf{u}_{\mathrm{j}}^{\mathrm{T}} \mathbf{x}\right)
$$

Neural Networks

- Define the basis functions $j=\{1 \ldots \mathrm{~d}\}$

$$
\phi_{\mathrm{j}}(\mathbf{x} ; \mathbf{u})=\sigma\left(\mathbf{u}_{\mathrm{j}}{ }^{\mathrm{T}} \mathbf{x}\right)
$$

- Put all $\mathbf{u}_{j} \in \mathbb{R}^{1 \times \mathrm{mm}}$ vectors into matrix \mathbf{U}

$$
\phi(\mathbf{x} ; \mathbf{U})=\sigma(\mathbf{U x})=\left[\begin{array}{l}
\sigma\left(\mathbf{u}^{\top} \mathbf{T} \mathbf{x}\right) \\
\sigma\left(\mathbf{u}_{2}^{\top} \mathbf{x}\right) \\
\ldots\left(\mathbf{u}_{\mathrm{d}}^{\top} \mathbf{x}\right)
\end{array}\right] \quad \in \mathbb{R}^{\mathrm{d}}
$$

- σ is a point-wise non-linearity acting on each vector element

Neural Networks

- Define the basis functions $j=\{1 \ldots \mathrm{~d}\}$

$$
\phi_{\mathrm{j}}(\mathbf{x} ; \mathbf{u})=\sigma\left(\mathbf{u}_{\mathrm{j}}^{\mathrm{T}} \mathbf{x}\right)
$$

- Put all $\mathbf{u}_{\mathrm{j}} \in \mathbb{R}^{1 \times \mathrm{m}}$ vectors into matrix \mathbf{U}

$$
\phi(\mathbf{x} ; \mathbf{U})=\sigma(\mathbf{U x})=\left[\begin{array}{l}
\sigma\left(\mathbf{u}^{\top} \mathbf{x} \mathbf{x}\right) \\
\sigma\left(\mathbf{u}_{2}^{\top} \mathbf{x}\right) \\
\sigma\left(\mathbf{u}_{\mathrm{d}}^{\top} \mathbf{x}\right)
\end{array}\right] \quad \in \mathbb{R}^{\mathrm{d}}
$$

- σ is a point-wise non-linearity acting on each vector element
- Full model becomes

$$
\mathrm{h}(\mathbf{x} ; \mathbf{w}, \mathbf{U})=\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x} ; \mathbf{U})
$$

Feed Forward Neural Network

Multi-layer Neural Network

- Multilayer NN
- Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

- Regression: Square error loss function

$$
L(\mathbf{w}, \mathbf{U})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

- Regression: Square error loss function

$$
L(\mathbf{w}, \mathbf{U})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

- Parameter update:

$$
\begin{aligned}
& w \leftarrow w-\eta \frac{\partial L(w, U)}{\partial w} \\
& U \leftarrow U-\eta \frac{\partial L(w, U)}{\partial U}
\end{aligned}
$$

- How to compute gradients?

Chain Rule - Symbolic Differentiation Painful!

$$
L(\mathbf{w}, \mathbf{U})=-\sum_{i} y_{i} \ln \left(\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right)+\left(1-y_{i}\right) \ln \left(1-\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right)
$$

- Derivative of sigmoid: $\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))$
- Chain rule to compute gradient w.r.t. w

$$
\frac{\partial L}{\partial \mathbf{w}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial \mathbf{w}}=\sum_{i} y_{i}\left(1-\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right) \sigma(\mathbf{U} \mathbf{x})+\left(1-y_{i}\right) \sigma(h(\mathbf{x})) \sigma\left(\mathbf{U x}_{i}\right)
$$

- Chain rule to compute gradient w.r.t. \mathbf{u}_{j}

$$
\begin{aligned}
\frac{\partial L}{\partial \mathbf{u}_{j}}= & \frac{\partial L}{\partial h} \frac{\partial h}{\partial \sigma} \frac{\partial \sigma}{\partial \mathbf{u}_{j}}= \\
= & \sum_{i} y_{i}\left(1-\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right) w_{j} \sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\left(1-\sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i} \\
& +\left(1-y_{i}\right) \sigma\left(h\left(\mathbf{x}_{i}\right)\right) w_{j} \sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\left(1-\sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}
\end{aligned}
$$

Automatic Differentiation

Problem: Compute gradients of z with respect to inputs $\left\{x_{1}, x_{2}\right\}$

$$
z=\sin \left(x_{1}\right)+x_{1} x_{2}
$$

Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1} \\
& w_{2}=x_{2} \\
& w_{3}=w_{1} w_{2} \\
& w_{4}=\sin \left(w_{1}\right) \\
& w_{5}=w_{3}+w_{4} \\
& z=w_{5}
\end{aligned}
$$

Problem: Compute gradients of z with respect to inputs $\left\{x_{1}, x_{2}\right\}$

$$
z=\sin \left(x_{1}\right)+x_{1} x_{2}
$$

Organize as a computational Graph

Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1} \\
& w_{2}=x_{2} \\
& w_{3}=w_{1} w_{2} \\
& w_{4}=\sin \left(w_{1}\right) \\
& w_{5}=w_{3}+w_{4} \\
& z=w_{5}
\end{aligned}
$$

Problem: Compute gradients of z with respect to inputs $\left\{x_{1}, x_{2}\right\}$

We know the gradients of simple functions: $\sin (x), x * y, x+y \ldots$

Chain rule:

$$
\frac{d z}{d w_{1}}=\sum_{p \in \text { parents }} \frac{d z}{d w_{p}} \frac{d w_{p}}{d w_{i}}
$$

$$
\begin{aligned}
& \frac{d w_{1}}{d x_{1}}=1 \\
& \frac{d w_{2}}{d x_{2}}=1 \\
& \frac{d w_{3}}{d w_{1}}=w_{2} \quad \frac{d w_{3}}{d w_{2}}=w_{1} \\
& \frac{d w_{4}}{d w_{1}}=\cos \left(w_{1}\right) \\
& \frac{d w_{5}}{d w_{3}}=1 \quad \frac{d w_{5}}{d w_{4}}=1
\end{aligned}
$$

Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1} \\
& w_{2}=x_{2} \\
& w_{3}=w_{1} w_{2} \\
& w_{4}=\sin \left(w_{1}\right) \\
& w_{5}=w_{3}+w_{4} \\
& z=w_{5}
\end{aligned}
$$

Problem: Compute gradients of z
with respect to inputs $\left\{x_{1}, x_{2}\right\}$
NOT going to find analytic derivative
WILL find a way to compute value of gradient for a given input point

Forward Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

For each input, from input to output sequentially, evaluate graph and gradients and store values

Forward Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

For each input, from input to output sequentially, evaluate graph and gradients and store values

Apply chain rule with multiplication

$$
\frac{d z}{d x_{2}}=\frac{d w_{2}}{d x_{2}} \frac{d w_{3}}{d w_{2}} \frac{d w_{5}}{d w_{3}} \frac{d z}{d w_{5}}=1 * 2 * 1 * 1=2
$$

Forward Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

Forward Mode allows us to compute the gradient of one input with respect to all the output

$$
\text { Jacobian } \frac{d z}{d x}=\left(\begin{array}{ccc}
\frac{d z_{1}}{d x_{1}} & \cdots & \frac{d z_{M}}{d x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{d z_{1}}{d x_{N}} & \cdots & \frac{d z_{M}}{d x_{N}}
\end{array}\right)
$$

If we have 1 output (Loss) and many inputs \rightarrow SLOW!

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

Evaluate graph and store values

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

Compute derivatives with chain rule from end to beginning:

$$
\frac{d z}{d w_{5}}=1
$$

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

Compute derivatives with chain rule from end to beginning:

$$
\begin{aligned}
& \frac{d z}{d w_{5}}=1 \\
& \frac{d z}{d w_{3}}=\frac{d z}{d w_{5}} \frac{d w_{5}}{d w_{3}}=1 \times 1=1
\end{aligned}
$$

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

Compute derivatives with chain rule from end to beginning:

$$
\begin{aligned}
& \frac{d z}{d w_{5}}=1 \\
& \frac{d z}{d w_{3}}=\frac{d z}{d w_{5}} \frac{d w_{5}}{d w_{3}}=1 \times 1=1 \\
& \frac{d z}{d w_{4}}=\frac{d z}{d w_{5}} \frac{d w_{5}}{d w_{4}}=1 \times 1=1
\end{aligned}
$$

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

Compute derivatives with chain rule

 from end to beginning:$$
\begin{aligned}
& \frac{d z}{d w_{5}}=1 \\
& \frac{d z}{d w_{3}}=\frac{d z}{d w_{5}} \frac{d w_{5}}{d w_{3}}=1 \times 1=1 \\
& \frac{d z}{d w_{4}}=\frac{d z}{d w_{5}} \frac{d w_{5}}{d w_{4}}=1 \times 1=1
\end{aligned}
$$

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

$$
\frac{d z}{d w_{5}}=1
$$

$$
\frac{d z}{d w_{2}}=\frac{d z}{d w_{3}} \frac{d w_{3}}{d w_{2}}=1 \times w_{1}=w_{1}=2
$$

$$
\frac{d z}{d w_{3}}=\frac{d z}{d w_{5}} \frac{d w_{5}}{d w_{3}}=1 \times 1=1
$$

$$
\begin{aligned}
\frac{d z}{d w_{1}} & =\frac{d z}{d w_{4}} \frac{d w_{4}}{d w_{1}}+\frac{d z}{d w_{3}} \frac{d w_{3}}{d w_{1}} \\
& =\cos \left(w_{1}\right)+w_{2}=\cos (2)+3
\end{aligned}
$$

$$
=2.58
$$

Reverse Mode Automatic Differentiation

$$
\begin{aligned}
& w_{1}=x_{1}=2 \\
& w_{2}=x_{2}=3 \\
& w_{3}=w_{1} w_{2}=6 \\
& w_{4}=\sin \left(w_{1}\right)=0.9 \\
& w_{5}=w_{3}+w_{4}=6.9 \\
& z=w_{5}
\end{aligned}
$$

For each output, can compute the gradient w.r.t. all inputs in one pass!

$$
\text { Jacobian } \frac{d z}{d x}=\left(\begin{array}{cccc}
\frac{d z_{1}}{d x_{1}} & \cdots & \frac{d z_{M}}{d x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{d z_{1}}{d x_{N}} & \cdots & \frac{d z_{M}}{d x_{N}}
\end{array}\right)
$$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

- Backward step (b-prop) $\frac{\partial L}{\partial \phi^{a}}=\sum_{j} \frac{\partial \phi_{j}^{(a+1)}}{\partial \phi_{j}^{a}} \frac{\partial L}{\partial \phi_{j}^{(a+1)}}$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

- Backward step (b-prop) $\frac{\partial L}{\partial \phi^{a}}=\sum_{j} \frac{\partial \phi_{j}^{(a+1)}}{\partial \phi_{j}^{a}} \frac{\partial L}{\partial \phi_{j}^{(a+1)}}$
- Compute parameter gradients $\frac{\partial L}{\partial \mathbf{w}^{a}}=\sum_{j} \frac{\partial \phi_{j}^{a}}{\partial \mathbf{w}^{a}} \frac{\partial L}{\partial \phi_{j}^{a}}$

Training

- Repeat gradient update of weights to reduce loss
- Each iteration through dataset is called an epoch
- Use validation set to examine for overtraining, and determine when to stop training

Vanishing Gradients

- Major challenge in DL: Vanishing Gradients
- Small gradients slow down / block, stochastic gradient descent \rightarrow Limits ability to learn!

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.

Activation Functions

- Vanishing gradient problem
- Derivative of sigmoid:

$$
\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))
$$

- Nearly 0 when x is far from 0 !
- Can make gradient descent hard!
- Rectified Linear Unit (ReLU)
$-\operatorname{ReLU}(\mathrm{x})=\max \{0, \mathrm{x}\}$
- Derivative is constant!

$$
\frac{\partial \operatorname{Re} L U(x)}{\partial x}=\left\{\begin{array}{cc}
1 & \text { when } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- ReLU gradient doesn't vanish

Neural Network Decision Boundaries

Three neurons

Five neurons

Fifty neurons

Four neurons

Twenty neurons

4-class classification 2-hidden layer NN ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}

$$
f(x)=\sigma\left(w_{1} x+b_{1}\right)+\sigma\left(w_{2} x+b_{2}\right)+\sigma\left(w_{3} x+b_{3}\right)+\ldots
$$

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}
- NOTE!
- A better approximation requires a larger hidden layer and this theorem says nothing about the relation between the two.
- We can make training error as low as we want by using a larger hidden layer. Result states nothing about test error
- Doesn't say how to find the parameters for this approximation

Deep Neural Networks

- As data complexity grows, need exponentially large number of neurons in a single-hidden-layer network to capture all structure in data
- Deep neural networks factorize the learning of structure in data across many layers
- Difficult to train, only recently possible with large datasets, fast computing (GPU / TPU) and new training procedures / network structures

Neural Network Zoo

- Structure of the networks, and the node connectivity can be adapted for problem at hand
- Moving inductive bias from feature engineering to model design
- Inductive bias:

Knowledge about the problem

- Feature engineering: Hand crafted variables
- Model design:

The data representation and the structure of the machine learning model / network

Neural Network Zoo - "Optimization" Perspective

- A single layer network may need a width exponential in D to approximate a depth-D network's output
- Simplified version of Telgarsky ($\underline{2015}, \underline{2016}$)

Neural Network Zoo - "Optimization" Perspective

- A single layer network may need a width exponential in D to approximate a depth-D network's output
- Simplified version of Telgarsky (2015, 2016)
- Over-parametrizing a deep model often improves test performance, contrary to bias-variance tradeoff prediction

(a) U-shaped "bias-variance" risk curve

(b) "double descent" risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped risk curve (i.e., the "classical" regime) together with the observed behavior from using high complexity function classes (i.e., the "modern" interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation threshold have zero training risk.

Neural Network Zoo - "Optimization" Perspective

- A single layer network may need a width exponential in D to approximate a depth-D network's output
- Simplified version of Telgarsky ($\underline{2015, ~ \underline{2016})}$
- Over-parametrizing a deep model often improves test performance, contrary to bias-variance tradeoff prediction
- But we must control that:
- Gradients don't vanish
- Gradient amplitude is homogeneous across network
- Gradients are under control when weights change

Neural Network Zoo - "Optimization" Perspective

- A single layer network may need a width exponential in D to approximate a depth-D network's output
- Simplified version of Telgarsky ($\underline{2015}, \underline{2016}$)
- Over-parametrizing a deep model often improves test performance, contrary to bias-variance tradeoff prediction
- Major part of deep learning is trying to choose the right function...
... instead of trying to improve training with regularization and new optimizers
- Need to make gradient descent work, even at the cost of a substantially engineering the model

Convolutional Neural Networks

Convolutional Neural Networks

- When the structure of data includes "invariance to translation", a representation meaningful at a certain location can / should be used everywhere

- Covolutional layers build on this idea, that the same "local" transformation is applied everywhere and preserves the signal structure

1D Convolutional Layer Example

Input

Output

1D Convolutional Layers

- Data: $\quad x \in \mathbb{R}^{M}$
- Convolutional kernel of width $\mathbf{k}: \quad u \in \mathbb{R}^{k}$
- Convolution $x \circledast u$ is vector of size M-k+1

$$
(x \circledast \mathrm{u})_{i}=\sum_{b=0}^{k-1} x_{i+b} u_{b}
$$

- Scan across data and multiply by kernel elements

Convolutional Filters

Convolution can implement in particular differential operators, e.g.

$$
(0,0,0,0,1,2,3,4,4,4,4) \circledast(-1,1)=(0,0,0,1,1,1,1,0,0,0)
$$

or crude "template matcher", e.g.

2D Convolution Over Multiple Channels

Input

Output

2D Convolution Over Multiple Channels

Input

Output

Kernel

2D Convolution Over Multiple Channels

Input

2D Convolutional Layer

- Input data (tensor) \mathbf{x} of size $\mathrm{C} \times H \times W$
- C channels (e.g. RGB in images)
- Learnable Kernel \mathbf{u} of size $\mathrm{C} \times h \times w$
- The size $h \times w$ is the receptive field

$$
(\boldsymbol{x} \circledast \boldsymbol{u})_{i, j}=\sum_{c=0}^{C-1}\left(\boldsymbol{x}_{c} \circledast \boldsymbol{u}_{c}\right)_{i, j}=\sum_{c=0}^{c-1} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \boldsymbol{x}_{c, n+i, m+j} \boldsymbol{u}_{c, n, m}
$$

- Output size $(H-h+1) \times(W-w+1)$ for each kernel
- Often called Activation Map or Output Feature Map

Stride - Step Size When Moving Kernel Across Input

Padding - Size of Zero Frame Around Input

Shared Weights: Economic and Equivariant

- Parameters are shared by each neuron producing an output in the activation map
- Dramatically reduces number of weights needed to produce an activation map
- Data: $256 \times 256 \times 3$ RGB image
- Kernel: $3 \times 3 \times 3 \rightarrow 27$ weights
- Fully connected layer:
- $256 \times 256 \times 3$ inputs $\rightarrow 256 \times 256 \times 3$ outputs $\rightarrow O\left(10^{10}\right)$ weights

Shared Weights: Economic and Equivariant

- Parameters are shared by each neuron producing an output in the activation map
- Dramatically reduces number of weights needed to produce an activation map
- Convolutional layer does pattern matching at any location \rightarrow Equivariant to translation

Pooling

- In each channel, find max or average value of pixels in a pooling area of size $h \times w$

Output

Pooling

- In each channel, find max or average value of pixels in a pooling area of size $h \times w$
- Invariance to permutation within Input pooling area

- Invariance to local perturbations

Output

Convolutional Network

- A combination of convolution, pooling, ReLU, and fully connected layers

Convolutional Networks

LeNet
(LeCun et al, 1998)

ImageNet Classification

AlexNet

(Krizhevsky et al, 2012)

Hierarchical Composition of Features

Feature visualization of convolutional net trained on ImaqeNet from [Zeiler \& Ferqus 20131

Very Deep CNNs

- To go deeper, architectures become much more complex
- Multiple convolutions in parallel and recombined
- Skip connections
- Recent ResNet-152 has 152 layers!

GoogLeNet
(Szegedy et al, 2014)

Residual Connections

- Training very deep networks is made possible because of the skip connections in the residual blocks. Gradients can shortcut the layers and pass through without vanishing.

Benefits of Depth

End of Lecture I

Backup

Dilation

Multiclass Classification?

- What if there is more than two classes?

- Softmax \rightarrow multi-class generalization of logistic loss
- Have N classes $\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{N}}\right\}$
- Model target $\mathbf{y}_{\mathrm{k}}=(0, \ldots, 1, \ldots 0) \quad \mathrm{k}^{\mathrm{k}}$ element in vector

$$
p\left(c_{k} \mid x\right)=\frac{\exp \left(\mathbf{w}_{k} x\right)}{\sum_{j} \exp \left(\mathbf{w}_{j} x\right)}
$$

- Gradient descent for each of the weights \mathbf{w}_{k}

