
Introduction to Deep Learning:
Lecture I

Michael Kagan

SLAC

IN2P3 School of Statistics 2021
January 26, 2021

Long History of Neural Networks 2

Vinyals et. al. 2019Rosenblatt 1958, 1960

𝑓 𝑥 = $
1 𝑖𝑓 '

!

𝑤!𝑥! + 𝑏 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron AlphaStar

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

Modern Neural Networks 3

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using
some form of gradient-based optimization.

- Yann LeCun, 2018

Modern Neural Networks

• Non-linear operations of data with parameters

• Layers (set of operations) designed to perform specific
mathematical operations

• Chain together layers to perform desired computation

• Train system (with examples) for desired computation using
gradient descent

4

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using
some form of gradient-based optimization.

- Yann LeCun, 2018

Modern Neural Networks 5

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using
some form of gradient-based optimization.

- Yann LeCun, 2018

An increasingly large number of people are defining the
networks procedurally in a data-dependent way (with
loops and conditionals), allowing them to change
dynamically as a function of the input data fed to
them. It's really very much like a regular program,
except it's parameterized

- Yann LeCun, 2018

The Plan

• Deep Learning is a HUGE field
– O(10,000) papers submitted to NeurIPS 2020 Conference

• I’m will condense some parts of what you would find
in some lectures of a Deep Learning course

• Highly recommend taking the time to go more
slowly through lectures from a class. Online-available
Recommendations:
– Francois Fleuret course at University of Geneva
– Gilles Louppe course at University of Liege
– Yann LeCun & Alfredo Canziani course at NYU

6

https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/

The Plan

• From Logistic Regression to Neural Networks

• Basics of Neural Networks

• Deep Neural Networks

• Convolutional Neural Networks

• Recurrent Neural Networks
– And a bit about Graph Neural Networks

• AutoEncoders and Generative Models

7

Lecture 1

Lecture 2

Reminder: Empirical Risk Minimization

• Framework to design learning algorithms
– L(⋅) is a loss function comparing prediction h(⋅) with target y

– W(w) is a regularizer, penalizing certain values of w
• l controls how much penalty… a hyperparameter we have to tune

• Learning is cast as an optimization problem

8

Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)

From Logistic Regression to Neural Networks 9

Linear Discriminant Analysis 10

• Goal: Separate data from two classes / populations

x2

x1

Linear Discriminant Analysis 11

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels: y Î {0,1}

Red: Y=0 Blue: Y=1

x2

x1

Linear Discriminant Analysis 12

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels: y Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

Likelihood:
Distribu0on of features
for a given class

Prior:
Probability of each class

Linear Discriminant Analysis 13

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels: y Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Assume likelihoods are Gaussian

𝑝 𝑥 𝑦 =
1

2𝜋 !|Σ|
exp −

1
2 𝒙 − 𝝁"

#Σ$%(𝒙 − 𝝁")

Predicting the Class

• Separating classes à Predict the class of a point x

14

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=

p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=

1

1 +

p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

=

1

1 + exp

⇣
log p(x|y=0)p(y=0)

log p(x|y=1)p(y=1)

⌘
• Want to build a classifier to predict

the label y given and input x

Predicting the Class

• Separating classes à Predict the class of a point x

15

Bayes Rulep(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=

p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=

1

1 +

p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

=

1

1 + exp

⇣
log p(x|y=0)p(y=0)

log p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

16

Bayes Rule

Marginal
definition

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=

p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=

1

1 +

p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

=

1

1 + exp

⇣
log p(x|y=0)p(y=0)

log p(x|y=1)p(y=1)

⌘

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=

p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=

1

1 +

p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=

1

1 + exp

⇣
log

p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

17

Bayes Rule

Why?

Marginal
definition

Logistic Sigmoid Function 18

Logistic Sigmoid

�(z) =
1

1 + e�z

Predicting Classes with Gaussian Likelihoods 19

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)

+ log

p(y = 1)

p(y = 0)

⌘

Constant w.r.t. xLog-likelihood ratio

Predicting Classes with Gaussian Likelihoods

• For our Gaussian data:

20

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)

+ log

p(y = 1)

p(y = 0)

⌘

= �

⇣
log p(x|y = 1)� log p(x|y = 0) + const.

⌘

= �

⇣
� 1

2

(x� µ1)
T
⌃

�1
(x� µ1) +

1

2

(x� µ0)
T
⌃

�1
(x� µ0)

+ const.

⌘

= �

⇣
w

T
x+ b

⌘
Collect terms

What did we learn?

• For this data, the log-likelihood ratio is linear!
– Line defines boundary to separate the classes
– Sigmoid turns distance from boundary to probability

21

Red: Y=0 Blue: Y=1

x2

x1

Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:

• Farther from boundary wTx+b=0,
more certain about class

• Sigmoid converts distance to class probability

22

p(y = 1|x) = �
⇣
w

T
x+ b

⌘
⌘ h(x;w)

Logistic Regression 23

p(y = 1|x) = �
⇣
w

T
x+ b

⌘
p(y = 1|x) = �(h(x,w))

=
1

1 + e�w

T
x -b

This unit is the main building block of Neural Networks!

Logistic Regression 24

• Computational Graph of function
– White node = input
– Red node = model parameter
– Blue node = intermediate operations

Slide credit: G. Louppe

This unit is the main building block of Neural Networks!

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:

25

• With 𝑝! ≡ 𝑝(𝑦! = 𝑦|𝒙!)

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi
(1� pi)

1�yi
=

pi if yi=1
1-pi if yi=0

• Goal:
– Given i.i.d. dataset of pairs (xi, yi)

find w and b that maximize likelihood of data

p(y = 1|x) = �
⇣
w

T
x+ b

⌘
⌘ h(x;w)

Logistic Regression

• Negative log-likelihood

26

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Logistic Regression

• Negative log-likelihood

27

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Lo
ss

-log(pi)
-log(1-pi)

pi

Logistic Regression

• Negative log-likelihood

28

• No closed form solution to 𝑤∗ = argmin
#
− lnℒ(𝑤)

• How to solve for w?

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

How to Minimize Loss ℒ 𝜃 ? Gradient Descent

• Gradient Descent:

Make a step 𝜃 ← 𝜃 − 𝜂𝑣 in direction 𝑣 with step
size 𝛾 to reduce loss

• How does loss change in different directions?

Let 𝜆 be a perturbation along direction 𝑣

(
𝑑
𝑑𝜆 ℒ 𝜃 + 𝜆𝑣

!"#
= 𝑣 ⋅ ∇$ℒ 𝜃

• Then Steepest Descent direction is: 𝑣 = −∇$ℒ 𝜃

29

Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. current parameters: ∇$!ℒ 𝜃!

– Update parameters: 𝜃!%& ← 𝜃! − 𝜂∇$!ℒ 𝜃!

– h is the learning rate, controls how big of a step to take

30

𝜃"

𝜃#

Stochastic Gradient Descent
• Loss is composed of a sum over samples:

∇&ℒ 𝜃 =
1
𝑁'

'(%

)

∇&ℒ 𝑦' , ℎ 𝑥'; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch)
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

31

Stochastic Gradient Descent
• Loss is composed of a sum over samples:

∇&ℒ 𝜃 =
1
𝑁'

'(%

)

∇&ℒ 𝑦' , ℎ 𝑥'; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch)
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

• Several updates to SGD, like momentum, ADAM, RMSprop to
– Help to speed up optimization in flat regions of loss
– Have adaptive learning rate
– Learning rate adapted for each parameter
– …

32

Step Sizes

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges

33

𝜃

ℒ(𝜃)

Small Learning rate

𝜃

ℒ(𝜃)

Large Learning rate

Gradient Descent

• Logistic Regression Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum

34

Lo
ss

L(w)

Lmin(w)

Iterationsw

Logistic Regression Example 35

p(y=1 | x)
0 1

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Adding non-linearity

• What if we want a non-linear decision boundary?

36

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

37

p(y = 1|x) = 1

1 + e�w

T�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

• What if we don’t know what basis functions we want?

38

p(y = 1|x) = 1

1 + e�w

T�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u) Rm → Rd

– Where u is a set of parameters for the transformation

39

p(y = 1|x) = 1

1 + e�w

T�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: f(x) ~ {x2, sin(x), log(x), …}

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u) Rm → Rd

– Where u is a set of parameters for the transformation

– Combines basis selection and learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

40

p(y = 1|x) = 1

1 + e�w

T�(x)

Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

41

Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) = Î Rd

– s is a point-wise non-linearity acting on each vector element

42

s(u1Tx)
s(u2Tx)

…
s(udTx)

Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) = Î Rd

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
h(x; w, U) = wTf(x; U)

43

s(u1Tx)
s(u2Tx)

…
s(udTx)

Feed Forward Neural Network 44

�(x) = �(Ux)

h(x) = w

T�(x)

U

Hidden layer
Composed of neurons

f(…) often called the
activation function

Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

45

U V

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

46

h(x) = w

T�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

47

h(x) = w

T�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U

48

h(x) = w

T�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?

49

Chain Rule – Symbolic Differentiation Painful!

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

50

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x

= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)

Automatic Differentiation 51

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥!, 𝑥"

𝑧 = sin 𝑥! + 𝑥!𝑥"

Automatic Differentiation 52

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥!, 𝑥"

𝑧 = sin 𝑥! + 𝑥!𝑥"

Organize as a computational Graph

Automatic Differentiation 53

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

𝑑𝑤#
𝑑𝑥#

= 1
𝑑𝑤"
𝑑𝑥"

= 1

𝑑𝑤'
𝑑𝑤#

= 𝑤"
𝑑𝑤'
𝑑𝑤"

= 𝑤#
𝑑𝑤(
𝑑𝑤#

= cos(𝑤#)

𝑑𝑤)
𝑑𝑤'

= 1
𝑑𝑤)
𝑑𝑤(

= 1

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥!, 𝑥"

We know the gradients of simple
functions: sin 𝑥 , 𝑥 ∗ 𝑦, 𝑥 + 𝑦 …

Chain rule:
𝑑𝑧
𝑑𝑤!

= +
"∈"$%&'()

𝑑𝑧
𝑑𝑤"

𝑑𝑤"
𝑑𝑤*

Automatic Differentiation 54

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%

𝑤! = 𝑥!
𝑤" = 𝑥"
𝑤$ = 𝑤!𝑤"
𝑤# = sin 𝑤!
𝑤% = 𝑤$ + 𝑤#
𝑧 = 𝑤%

Problem: Compute gradients of 𝑧
with respect to inputs 𝑥!, 𝑥"

NOT going to find analytic derivative

WILL find a way to compute value of
gradient for a given input point

Forward Mode Automatic Differentiation 55

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

For each input, from input to output
sequentially, evaluate graph and gradients
and store values

𝑑𝑤"
𝑑𝑥"

= 1
𝑑𝑤'
𝑑𝑤"

= 𝑤# = 2

𝑑𝑤)
𝑑𝑤'

= 1 𝑑𝑧
𝑑𝑤)

= 1

Forward Mode Automatic Differentiation 56

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each input, from input to output
sequentially, evaluate graph and gradients
and store values

Apply chain rule with multiplication
𝑑𝑧
𝑑𝑥:

=
𝑑𝑤:
𝑑𝑥:

𝑑𝑤;
𝑑𝑤:

𝑑𝑤<
𝑑𝑤;

𝑑𝑧
𝑑𝑤<

= 1 ∗ 2 ∗ 1 ∗ 1 = 2

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑑𝑤"
𝑑𝑥"

= 1
𝑑𝑤'
𝑑𝑤"

= 𝑤# = 2

𝑑𝑤)
𝑑𝑤'

= 1 𝑑𝑧
𝑑𝑤)

= 1

Forward Mode Automatic Differentiation 57

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Forward Mode allows us to compute the gradient
of one input with respect to all the output

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑑𝑤"
𝑑𝑥"

= 1
𝑑𝑤'
𝑑𝑤"

= 𝑤# = 2

𝑑𝑤)
𝑑𝑤'

= 1 𝑑𝑧
𝑑𝑤)

= 1

Jacobian ,𝒛
,𝒙
=

,/"
,0"

… ,/#
,0"

⋮ ⋱ ⋮
,/"
,0$

… ,/#
,0$

If we have 1 output (Loss) and many inputs à SLOW!

Reverse Mode Automatic Differentiation 58

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Evaluate graph and store values

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

Reverse Mode Automatic Differentiation 59

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤% 𝑑𝑧

𝑑𝑤%
= 1

= 1

Reverse Mode Automatic Differentiation 60

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

= 1= 1

Reverse Mode Automatic Differentiation 61

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

= 1= 1

= 1

Reverse Mode Automatic Differentiation 62

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

= 1= 1

= 1

𝑑𝑧
𝑑𝑤"

=
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤"

= 1×𝑤! = 𝑤! = 2

= 𝑤!= 2

Reverse Mode Automatic Differentiation 63

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑑𝑧
𝑑𝑤%

= 1

𝑑𝑧
𝑑𝑤$

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤$

= 1×1 = 1

𝑑𝑧
𝑑𝑤#

=
𝑑𝑧
𝑑𝑤%

𝑑𝑤%
𝑑𝑤#

= 1×1 = 1

𝑑𝑧
𝑑𝑤"

=
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤"

= 1×𝑤! = 𝑤! = 2

𝑑𝑧
𝑑𝑤!

=
𝑑𝑧
𝑑𝑤#

𝑑𝑤#
𝑑𝑤!

+
𝑑𝑧
𝑑𝑤$

𝑑𝑤$
𝑑𝑤!

= cos 𝑤! + 𝑤" = cos 2 + 3
= 2.58

= 𝑤!= 2

= 𝑤
"= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Compute derivatives with chain rule
from end to beginning:

Reverse Mode Automatic Differentiation 64

𝑤! = 𝑥! = 2
𝑤" = 𝑥" = 3
𝑤$ = 𝑤!𝑤" = 6
𝑤# = sin 𝑤! = 0.9
𝑤% = 𝑤$ + 𝑤# = 6.9
𝑧 = 𝑤%

𝑤! = 𝑥!

𝑤" = 𝑥"

𝑤# = sin(𝑤!)

𝑤$ = 𝑤!𝑤"

𝑤% = 𝑤$ + 𝑤# 𝑧 = 𝑤%
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each output, can compute the
gradient w.r.t. all inputs in one pass!

= 𝑤!= 2

= 𝑤
"= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Jacobian ,𝒛
,𝒙
=

,/"
,0"

… ,/#
,0"

⋮ ⋱ ⋮
,/"
,0$

… ,/#
,0$

Backpropagation

• Loss function composed of layers of nonlinearity
65

𝐿 𝜙1 …𝜙& 𝑥

Backpropagation

• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

66

𝐿 𝜙1 …𝜙& 𝑥

𝜙1 …𝜙& 𝑥

Backpropagation

• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

67

@L

@�a
=

X

j

@�(a+1)
j

@�a
j

@L

@�(a+1)
j

𝐿 𝜙1 …𝜙& 𝑥

𝜙1 …𝜙& 𝑥

Backpropagation

• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients

68

@L

@�a
=

X

j

@�(a+1)
j

@�a
j

@L

@�(a+1)
j

@L

@wa
=

X

j

@�a
j

@wa

@L

@�a
j

𝐿 𝜙1 …𝜙& 𝑥

𝜙1 …𝜙& 𝑥

Training

• Repeat gradient update of weights to reduce loss
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and
determine when to stop training

69

[graphic from H. Larochelle]

Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic
gradient descent à Limits ability to learn!

70

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

• Vanishing gradient problem
– Derivative of sigmoid:

– Nearly 0 when x is far from 0!
– Can make gradient descent hard!

71

∂σ (x)
∂x

=σ (x)(1−σ (x))

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$

Neural Network Decision Boundaries 72

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem

• Feed-forward neural network with a single hidden
layer containing a finite number of non-linear
neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily well
on a compact space of ℝ%

73

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem

• Feed-forward neural network with a single hidden
layer containing a finite number of non-linear
neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily well
on a compact space of ℝ%

74

• NOTE!
– A better approximation requires a larger hidden layer and this

theorem says nothing about the relation between the two.

– We can make training error as low as we want by using a larger
hidden layer. Result states nothing about test error

– Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Neural Networks

• As data complexity grows, need exponentially large number of neurons in
a single-hidden-layer network to capture all structure in data

• Deep neural networks factorize the learning of structure in data across
many layers

• Difficult to train, only recently possible with large datasets, fast computing
(GPU / TPU) and new training procedures / network structures

75

Neural Network Zoo

• Structure of the networks, and
the node connectivity can be
adapted for problem at hand

• Moving inductive bias from
feature engineering to model
design

– Inductive bias:
Knowledge about the problem

– Feature engineering:
Hand crafted variables

– Model design:
The data representation and the
structure of the machine
learning model / network

76

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Zoo – “Optimization” Perspective 77

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 78

Belkin et. al. 2018

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 79

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 80

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

• Major part of deep learning is trying to choose the
right function…

… instead of trying to improve training with
regularization and new optimizers

– Need to make gradient descent work, even at the cost of a
substantially engineering the model

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Convolutional Neural Networks 81

Convolutional Neural Networks

• When the structure of data includes “invariance
to translation”, a representation meaningful at a
certain location can / should be used everywhere

82

Fleuret, Deep Learning Course

• Covolutional layers build on this idea, that the
same “local” transformation is applied everywhere
and preserves the signal structure

https://fleuret.org/dlc/

1D Convolutional Layer Example 83

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

1D Convolutional Layers

• Data: 𝑥 ∈ ℝ&

• Convolutional kernel of width k: 𝑢 ∈ ℝ'

• Convolution 𝑥 ⊛ 𝑢 is vector of size M-k+1

84

𝑥 ⊛ u ' = 8
D(E

F$%

𝑥'GD𝑢D

• Scan across data and multiply by kernel elements

Convolutional Filters 85

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels 86

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels 87

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels 88

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolutional Layer

• Input data (tensor) x of size C×𝐻×𝑊
– C channels (e.g. RGB in images)

• Learnable Kernel u of size C×ℎ×𝑤
– The size ℎ×𝑤 is the receptive field

89

• Output size (𝐻 − ℎ + 1)×(𝑊 −𝑤 + 1) for each kernel
– Often called Activation Map or Output Feature Map

𝒙⊛ 𝒖 ',I = 8
J(E

K$%

𝒙J⊛𝒖J ',I = 8
J(E

K$%

8
L(E

M$%

8
!(E

N$%

𝒙J,LG',!GI𝒖J,L,!

Stride – Step Size When Moving Kernel Across Input 90

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Padding – Size of Zero Frame Around Input 91

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an
output in the activation map

• Dramatically reduces number of weights needed to
produce an activation map
– Data: 256×256×3 RGB image
– Kernel: 3×3×3 → 27 weights
– Fully connected layer:

• 256×256×3 inputs à 256×256×3 outputs à 𝑂(10!+) weights

92

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an
output in the activation map

• Dramatically reduces number of weights needed to
produce an activation map

• Convolutional layer does pattern matching at any
location à Equivariant to translation

93

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Pooling

• In each channel, find max or average value of
pixels in a pooling area of size ℎ×𝑤

94

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Pooling

• In each channel, find max or average value of
pixels in a pooling area of size ℎ×𝑤

95

Fleuret, Deep Learning Course

• Invariance to
permutation within
pooling area

• Invariance to local
perturbations

https://fleuret.org/dlc/

Convolutional Network

• A combination of convolution, pooling, ReLU,
and fully connected layers

96

Convolutional Networks 97

LeNet
(LeCun et al, 1998)

AlexNet
(Krizhevsky et al, 2012)

ImageNet Classification

Hierarchical Composition of Features 98

Very Deep CNNs

• To go deeper,
architectures become
much more complex
– Multiple convolutions

in parallel and
recombined

– Skip connections

• Recent ResNet-152
has 152 layers!

99

GoogLeNet
(Szegedy et al, 2014)

ResNet
(He et al, 2015)Credits: Deep Dive in Deep Learning

https://d2l.ai/

Residual Connections

• Training very deep networks is made possible
because of the skip connections in the residual
blocks. Gradients can shortcut the layers and pass
through without vanishing.

10
0

Credits: Deep Dive in Deep Learning , and G. Louppe

https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md

Benefits of Depth 10
1

End of Lecture I

10
2

Backup 10
3

Dilation 10
4

Multiclass Classification?
• What if there is more than two classes?

• Softmax→ multi-class generalization of logistic loss
– Have N classes {c1, …, cN}
– Model target yk = (0, …, 1, …0)

– Gradient descent for each of the weights wk

10
5

kth element in vector

p(ck|x) =
exp(wkx)P
j exp(wjx)

