

Basic concepts – part 2

SOS 2021 18-29 January, Online School

Outline

Basics

- Sample measurements
- Error propagation
- Probabilities, Bayes Theorem
- Probability density function

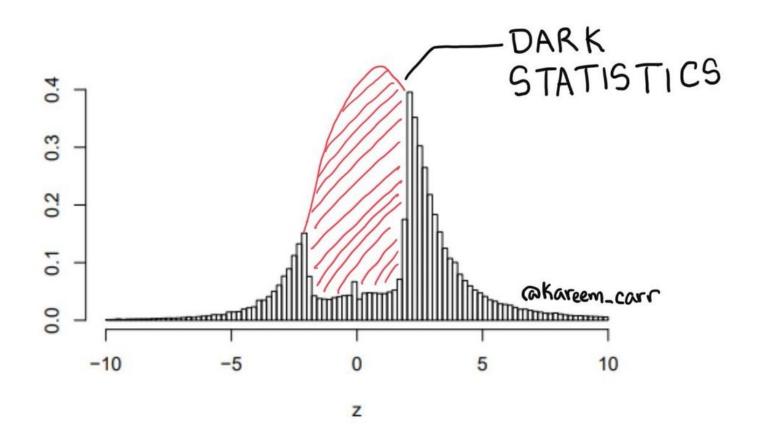
Parameter estimation

- Maximum likelihood method
- Linear regression
- Least square fit

Model testings

- p-value and test statistics
- Chi2 and KS tests
- Hypothesis testing

Samples and parameter estimation



Samples and parameter estimation

A random variable X can be described by its p.d.f f(x)

f depends of (generally unknown) parameters $\vec{\theta} = \{\theta_1,...,\theta_p\} \rightarrow f(x,\vec{\theta})$

An **experiment** measuring X provides a **sample** of values $\vec{x} = \{x_1, ..., x_N\}$

One can construct a function of \vec{x} to infer the properties of the p.d.f

- This function is called an estimator
- The estimator for a parameter θ is often written: $\widehat{\theta}$
- Parameter fitting: estimate θ using estimator $\hat{\theta}$ and data \vec{x}
- $\widehat{\boldsymbol{\theta}}(\vec{x})$ is itself a random variable following a p.d.f $g(\widehat{\boldsymbol{\theta}}; \boldsymbol{\theta})$

A good estimator should be

Consistent: $\widehat{\boldsymbol{\theta}}$ converges to $\boldsymbol{\theta}$ for infinite sample $(N \to +\infty)$

Unbiased: average of $\widehat{\boldsymbol{\theta}}$ for infinite number of measurements is $\boldsymbol{\theta}$

$$\rightarrow$$
 that is: $E[\widehat{\theta}(\vec{x})] - \theta = b = 0$

SOS 2021

Basic estimators

Consider a **sample** of size N of a random variable X: $\vec{x} = \{x_1, ..., x_N\}$ X follows a p.d.f f(x) of truth mean μ and variance σ^2

A simple estimator is the **arithmetic mean** of values x_i : $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

$$E[\bar{x}] = \frac{1}{N} \sum_{i=1}^{N} E[x_i] = \mu$$
 \rightarrow Unbiased estimator of μ

$$V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$$

 $V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$ This implies that the uncertainty on the sample mean \bar{x} is: σ/\sqrt{N}

Estimator of the variance: $v = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \overline{x^2} - \bar{x}^2$

Expected value of the estimator: $E[v] = \sigma^2 - \frac{\sigma^2}{N} = \frac{N-1}{N} \sigma^2$

 \rightarrow Biased estimator of σ^2 !

Basic estimators

Consider a **sample** of size N of a random variable X: $\vec{x} = \{x_1, ..., x_N\}$ X follows a p.d.f f(x) of truth mean μ and variance σ^2

A simple estimator is the **arithmetic mean** of values x_i : $\bar{x} = \frac{1}{N} \sum x_i$

$$E[\bar{x}] = \frac{1}{N} \sum_{i=1}^{N} E[x_i] = \mu$$
 \rightarrow Unbiased estimator of μ

$$V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$$

 $V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$ This implies that the uncertainty on the sample mean \bar{x} is: σ/\sqrt{N}

Estimator of the variance: $v = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \frac{N}{N-1} (\overline{x^2} - \bar{x}^2)$

Expected value of the estimator: $E[v] = \sigma^2$

 \rightarrow Unbiased estimator of σ^2 !

Maximum Likelihood estimator (ML)

Suppose a random variable **X** distributed according to a p.d.f $f(x; \vec{\theta})$

- The form of f being know but not the parameters $\vec{\theta} = \{\theta_1, \dots, \theta_P\}$
- Consider a **sample** of X of N values: $\vec{x} = \{x_1, ..., x_N\}$

The method of ML is a technique to estimate $\vec{\theta}$ given data \vec{x}

Joint likelihood function (the
$$x_i$$
 are fixed here)
$$L(\vec{\theta}) = \prod_{i=1}^{N} f(x_i; \vec{\theta})$$

The **estimators** $\widehat{\theta_i}$ are given by: $\frac{\partial L}{\partial \theta_i} = 0$, $i = 1 \dots P$

Notes:

- maximizing the likelihood provides and estimate of parameters heta
- In practice the log of L (log likelihoood) is often used
- The likelihood is not a p.d.f!
- Bayesian do transform the likelihood in a p.d.f

SOS 2021

Simple examples

Exponential distribution $f(x;\tau) = \frac{1}{\tau}e^{-\frac{x}{\tau}}$

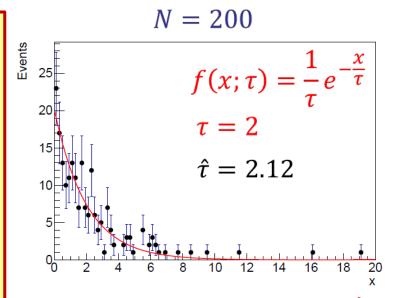
Likelihood:
$$L(\tau) = \prod_{i=1}^{N} \frac{1}{\tau} e^{-\frac{x_i}{\tau}}$$

Log-likelihood:

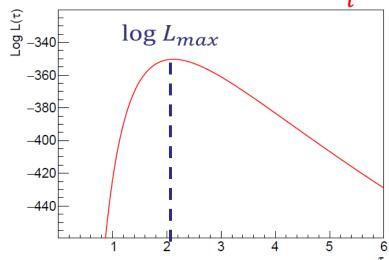
$$\log L(\tau) = \sum_{i=1}^{N} \log f(x_i; \tau) = -N \log \tau - \sum_{i=1}^{N} \frac{x_i}{\tau}$$

Estimator:
$$\frac{d \log L}{d \tau} = 0 \Leftrightarrow \tau = \hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $E[\hat{\tau}] = \tau$ (unbiased estimator)



$$\log L(\tau) = -N \log \tau - N \frac{\hat{\tau}}{\tau}$$

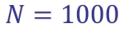


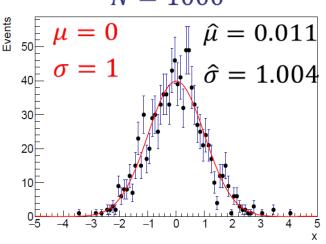
Simple examples

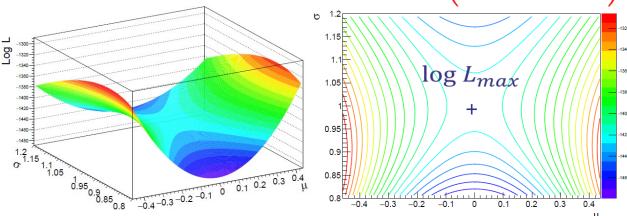
Gaussian distribution
$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
, $\log L(\vec{\theta}) = \sum_{i=1}^{N} \log f(x_i; \mu, \sigma)$

Estimators:

$$\begin{cases} \frac{\partial \log L}{\partial \mu} = 0 \iff \widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_{i} & E[\widehat{\mu}] = \mu \quad \text{(unbiased)} \\ \frac{\partial \log L}{\partial \sigma^{2}} = 0 \iff \widehat{\sigma^{2}} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \widehat{\mu})^{2} & E[\widehat{\sigma^{2}}] = \frac{N-1}{N} \sigma^{2} \text{ (biased)} \end{cases}$$







SOS 2021

Variance of estimator, $V[\hat{\tau}]$ can be tricky to estimate. Several methods exist:

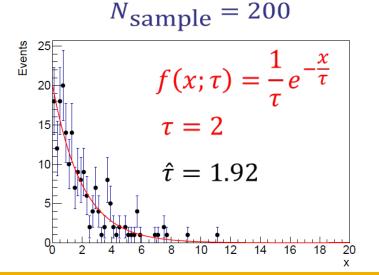
1) Analytical method

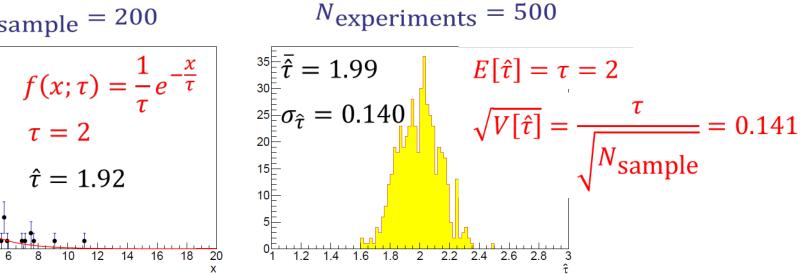
For example for the previous exponential distribution

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $V[\hat{\tau}] = (...) = \frac{\tau^2}{N}$

2) Monte-Carlo method

Very useful for complex cases (multiparameters, systematic uncertainties) Ex: generate samples distributed exponentially





SOS 2021 11

3) Cramér-Rao bound

Gives a lower bound on any estimator variance (not only ML)

$$V[\theta] \ge \frac{\left(1 + \frac{\partial b}{\partial \theta}\right)^2}{E\left[-\frac{\partial^2 \log L}{\partial \theta^2}\right]}$$
, $(b: bias)$ Equality: estimator is **efficient** ML are asymptotically efficient

For multiple parameters $\vec{\theta} = \{\theta_1, ..., \theta_P\}$: $(V^{-1})_{ij} = E \left[-\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_i} \right]$ (and assuming efficiency and b=0)

For large samples: an estimate of the inverse covariant matrix V^{-1} is: $(\widehat{V^{-1}})_{ij} = -\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_i} (\theta = \hat{\theta})$ inverse covariant matrix V-1 is:

$$\left(\widehat{V^{-1}}\right)_{ij} = -\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_j} (\theta = \widehat{\theta})$$

1 parameter:
$$\widehat{\sigma^2} = \frac{-1}{\frac{\partial^2 \log L}{\partial \theta^2}(\widehat{\theta})}$$

SOS 2021 12

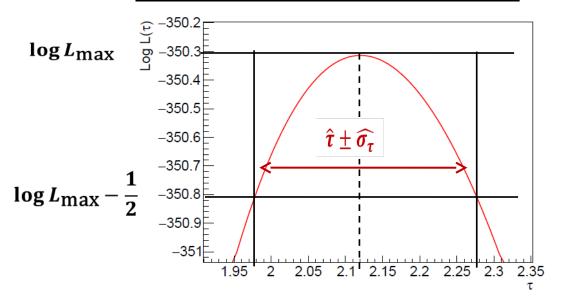
4) Graphical method

Taylor expansion of log L on estimate:

$$\log L(\theta) = \log L(\hat{\theta}) + (\theta - \hat{\theta}) \frac{\partial \log L}{\partial \theta} (\hat{\theta}) + \frac{1}{2} (\theta - \hat{\theta})^2 \frac{\partial^2 \log L}{\partial \theta^2} (\hat{\theta})$$
$$= \log L_{\text{max}} - \frac{1}{2\widehat{\sigma^2}} (\theta - \hat{\theta})^2$$

$$\Rightarrow \log L(\hat{\theta} \pm \hat{\sigma}) = \log L_{\max} - \frac{1}{2}$$

 $\widehat{ au} \pm \widehat{\sigma_{ au}}$ corresponds to a 68.3% confidence interval



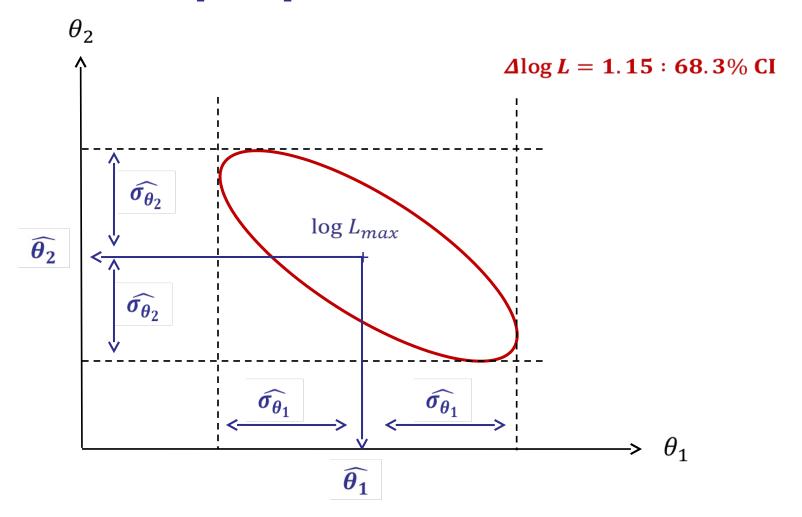
$$\Delta \log L = 0.5 : 68.3\% \text{ CI}$$

$$\Delta \log L = 2 : 95.4\% \text{ CI}$$

$$\Delta \log L = 4.5 : 99.7\% \text{ CI}$$

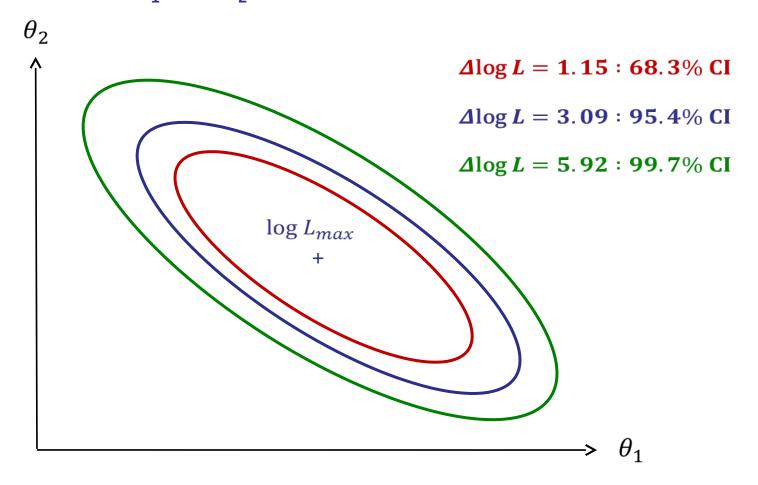
Error ellipse

Case for 2 parameters θ_1 and θ_2 :

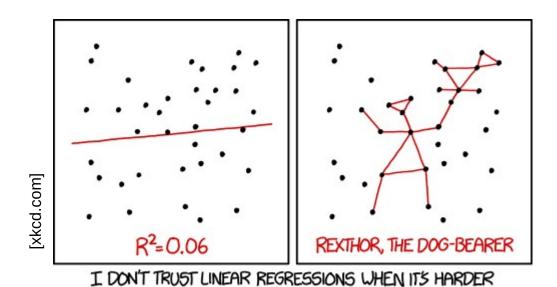


Error ellipse

Case for 2 parameters θ_1 and θ_2 :



Likelihood, regression, chi2-method



TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Linear regression

N observations of variable $\mathbf{x} \in \mathbb{R}^p$ and target $\mathbf{y} \in \mathbb{R}^q$

Linear model: $y = f(W, x) = W^T x + w_0$ W: parameters

for q=1:
$$f(\mathbf{x}) = \sum_{i=1}^{p} w_i x_i + w_0$$

Linear basis function models: apply **M** non-linear functions ϕ to features **x**

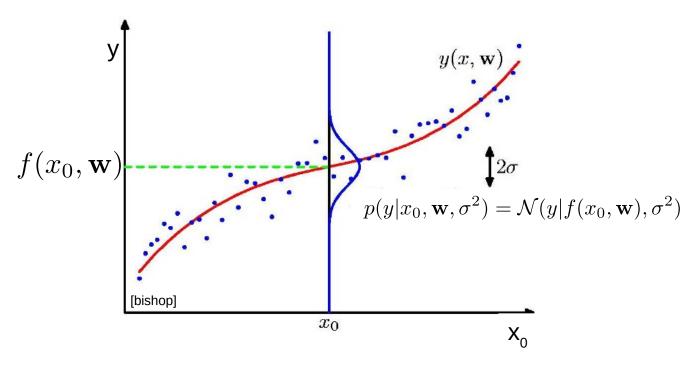
$$\mathbf{x} \longrightarrow \left(egin{array}{c} \phi_1(\mathbf{x}) \ dots \ \phi_j(\mathbf{x}) : extbf{basis function} \ \phi_j: \mathbb{R}^p
ightarrow \mathbb{R} \end{array}
ight)$$

$$\mathbf{f}(\mathbf{W}, \mathbf{x}) = \mathbf{W}^T \mathbf{\Phi}(\mathbf{x}) + \mathbf{w_0}$$
for q=1: $f(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) + w_0$

SOS 2021 17

Likelihood and regression

Say we want to fit the data shown below using a linear model $f(x, \mathbf{w})$



Let's assume target value, ${\bf y}$, is subject to **Gaussian noise** σ

We can construct a predictive probabilistic model as:

$$p(y|x, \mathbf{w}, \sigma^2) = \mathcal{N}(y|f(x, \mathbf{w}), \sigma^2)$$

Likelihood and regression

The model parameters (w, σ) are determined by maximizing the likelihood

$$\log(\mathbf{w}, \sigma^2) = \sum_{i=1}^{N} \log \mathcal{N}(y_i | f(x_i, \mathbf{w}), \sigma^2)$$

This is equivalent as minimizing the sum of square error $E(\mathbf{w})$ to determine \mathbf{w}_{MI}

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2$$

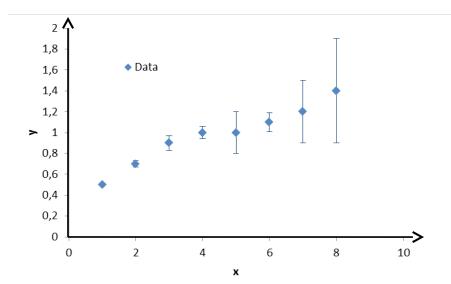
And the **noise** parameter is given by:

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i, \mathbf{w_{ML}}) - y_i \right)^2$$

Chi-square method

Consider N independent variables y_i function of a another variable x_i

- The y_i are Gaussian distributed of mean μ_i and (known) std σ_i
- Suppose that $\mu = f(x; \vec{\theta})$ with unknow parameters $\vec{\theta}$



Likelihood:
$$L(\vec{\theta}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2}\left(\frac{y_i - f(x_i; \vec{\theta})}{\sigma_i}\right)^2}$$

Maximizing $\log L(\vec{\theta})$ to estimate parameters $\vec{\theta}$ is equivalent to **minimize**:

$$\chi^{2}(\vec{\theta}) = \sum_{i=1}^{N} \left(\frac{y_{i} - f(x_{i}; \vec{\theta})}{\sigma_{i}} \right)^{2}$$

Simple example

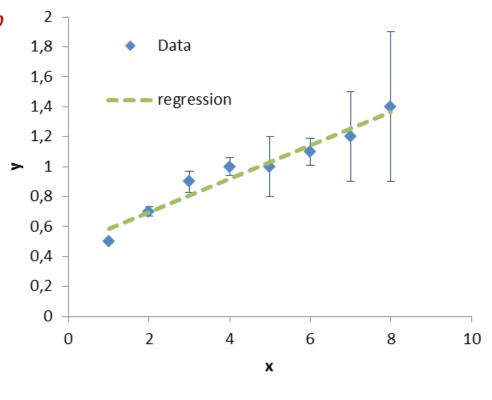
Fit data with a line f(x; a, b) = ax + b

Simple **linear regression**: minimize the variance of $y_i - f(x_i; a, b)$

$$w(a,b) = \sqrt{\frac{1}{n} \sum_{i} (y_i - (ax_i + b))^2}$$

$$\begin{cases} \frac{\partial w(a,b)}{\partial a} = 0\\ \frac{\partial w(a,b)}{\partial b} = 0 \end{cases}$$

$$\begin{cases} a = \frac{\text{cov}(x,y)}{\text{var}(x)} = r \frac{\sigma(y)}{\sigma(x)} \\ b = \bar{y} - r \frac{\sigma(y)}{\sigma(x)} \bar{x} \end{cases}$$



(r: correlation factor between x and y)

Simple example

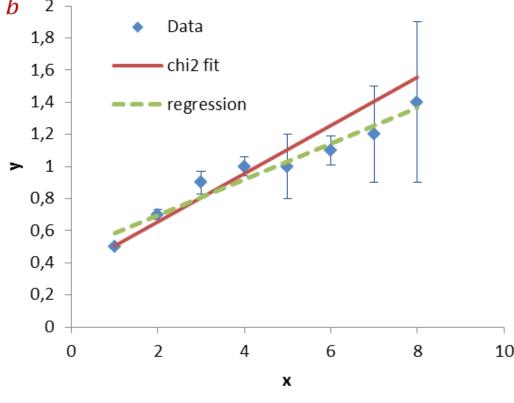
Fit data with a line f(x; a, b) = ax + b

Chi-square fit: minimize $\chi^2(a,b)$

$$\chi^{2}(a,b) = \sum_{i=1}^{N} \left(\frac{y_{i} - f(x_{i}; a, b)}{\sigma_{i}} \right)^{2} > 1$$
_{0,8}

$$\frac{\partial \chi^2}{\partial a} = 0 \qquad \frac{\partial \chi^2}{\partial b} = 0$$

$$a = \frac{AE - DC}{BE - C^2} \quad b = \frac{DB - AC}{BE - C^2}$$



$$A = \sum_{i} \frac{x_{i} y_{i}}{(\Delta y_{i})^{2}}, \ B = \sum_{i} \frac{x_{i}^{2}}{(\Delta y_{i})^{2}}, \ C = \sum_{i} \frac{x_{i}}{(\Delta y_{i})^{2}}, D = \sum_{i} \frac{y_{i}}{(\Delta y_{i})^{2}}, \ E = \sum_{i} \frac{1}{(\Delta y_{i})^{2}}$$

Chi-square: generalization

If yi measurements are not independent but related by their cov. matrix Vii

$$\log L(\vec{\theta}) = -\frac{1}{2} \sum_{i,j=1}^{N} (y_i - f(x_i; \vec{\theta}))(V^{-1})_{ij} (y_j - f(x_j; \vec{\theta})) + \text{additive terms}$$

 $\log L(\vec{\theta})$ is maximized by minimizing:

$$\chi^{2}(\vec{\theta}) = \sum_{i,j=1}^{N} (y_{i} - f(x_{i}; \vec{\theta}))(V^{-1})_{ij}(y_{j} - f(x_{j}; \vec{\theta}))$$

Written in matrix notation:
$$\chi^2(\vec{\theta}) = (\vec{y} - \vec{f})^T V^{-1} (\vec{y} - \vec{f})$$

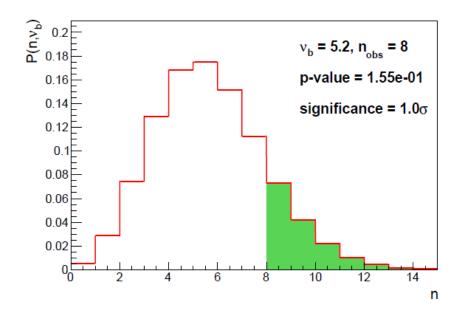
If $f(x_i; \vec{\theta})$ is linear in the parameters $\vec{\theta}$: 1- σ uncertainty contour given by:

$$\chi^{2}(\vec{\theta}) = \chi^{2}(\vec{\hat{\theta}}) + 1 = \chi_{min}^{2} + q$$

N param.	1	2	3
q	1.00	2.30	3.53

SOS 2021 23

Test hypothesis



Test hypothesis

Testing compatibility of observed data against a model

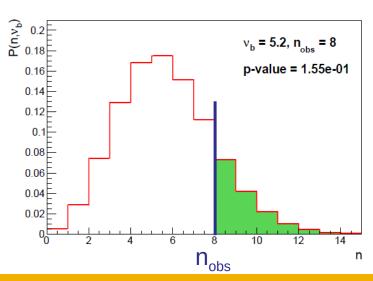
- model = background predictions (for simplicity)
 - \rightarrow n_b events: follows **Poisson** distribution of mean v_b
- data: n_{obs} observed events

To quantify **degree of compatibility** of n_{obs} with the background-only hypothesis we calculate how likely it is to find n_{obs} or more events of background

p-value: probability that the expected number of event (background) is at least as high as the number of observed data

$$p-value = P(n \ge n_{obs}) = 1 - P(n < n_{obs})$$

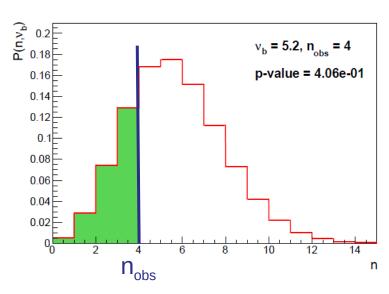
$$= \sum_{n=n_{obs}}^{+\infty} \frac{e^{-\nu_b} \nu_b^n}{n!} = 1 - \sum_{n=0}^{n_{obs}-1} \frac{e^{-\nu_b} \nu_b^n}{n!}$$
[for $\nu_b < n_{obs}$]



Test hypothesis

For the case where $v_b > n_{obs}$ one can define:

$$p-value = \sum_{n=0}^{n_{obs}} \frac{e^{-\nu_b} \nu_b^n}{n!}$$



The previous sums can be **simplified** using incomplete **Gamma** functions:

$$\sum_{n=n_{obs}}^{+\infty} \frac{e^{-\nu_b \nu_b^n}}{n!} = \frac{1}{\Gamma(n_{obs})} \int_{0}^{\nu_b} t^{n_{obs}-1} e^{-t} dt = \Gamma(\nu_b, n_{obs})$$

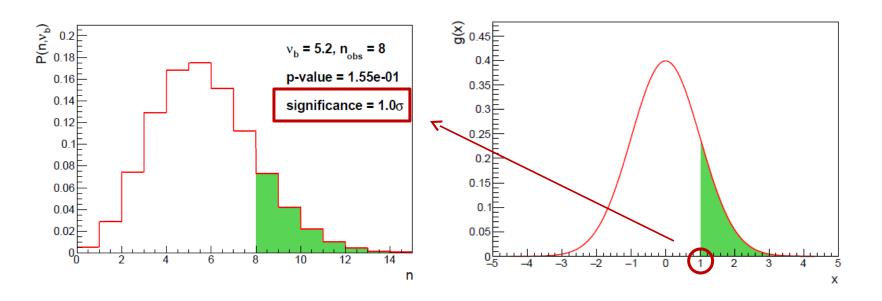
with
$$\Gamma(n_{obs}) = \int_{0}^{\infty} t^{n_{obs}-1}e^{-t}dt = (n_{obs}-1)!$$
 (if n_{obs} integer)

Significance

It is customary to transform the p-value into a **Z-value** using the integral of the Gaussian distribution:

$$\int_{-\infty}^{Z} \text{Gaus}(x, \mu = 0, \sigma = 1) dx = \int_{-\infty}^{Z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1 - \text{pvalue}$$

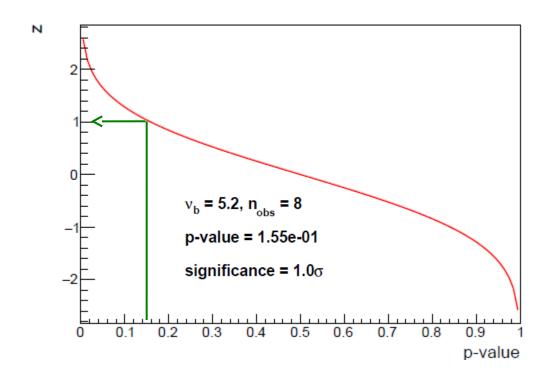
Z-value = number of standard deviation, used as a measure of the **significance** of an excess (or a deficit) w.r.t the (background) hypothesis.



Significance

In practice one uses the **inverse cumulative distribution function** of the Gaussian distribution to compute the significance:

$$Z = \sqrt{2} \text{Erf}^{-1} (1 - 2 \times \text{p-value})$$



p-value	Z	
0.159	1σ	
2.28×10 ⁻²	2σ	
1.35×10 ⁻³	3σ	(evidence)
3.15×10 ⁻⁵	4σ	
2.85×10 ⁻⁷	5σ	(discovery)

BumpHunter algorithm

Search for excess or deficit in a spectrum

G. Choudalakis

No assumptions are made on the signal shape or yield

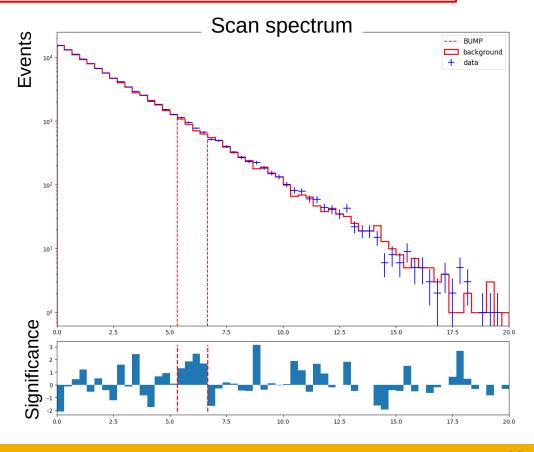
1101.0390

Just test data against background-only hypothesis

Python implementation (L. Vaslin): https://pypi.org/project/pyBumpHunter/

- → Compute the p-value for all possible intervals.
- → Select the interval with smallest p-value.

This gives the local p-value: p_{min}^{local}



BumpHunter algorithm

Search for excess or deficit in a spectrum

G. Choudalakis

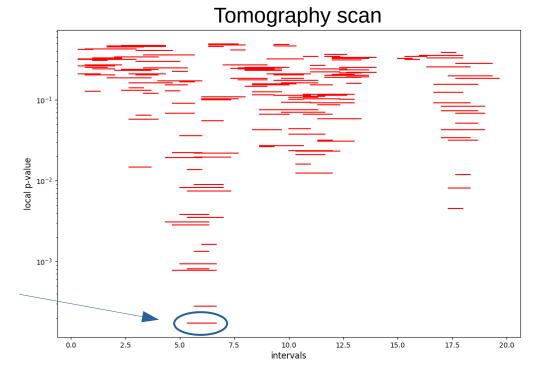
- No assumptions are made on the signal shape or yield
- 1101.0390

Just test data against background-only hypothesis

Python implementation (L. Vaslin): https://pypi.org/project/pyBumpHunter/

- Compute the p-value for all possible intervals.
- → Select the interval with smallest p-value.

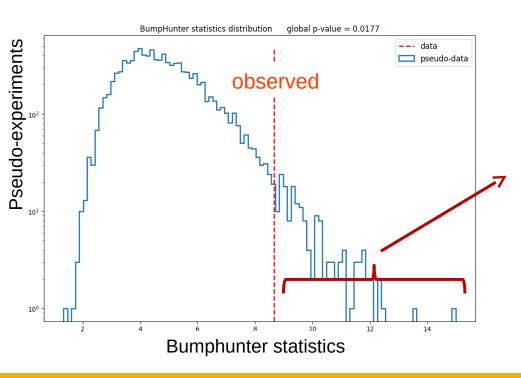
This gives the local p-value: p_{min}^{local}



BumpHunter algorithm

Since **many intervals** are considered there is a increasing probability that an excess is **found** due to statistical **fluctuations**

- This is the (in)famous (and misnamed) Look Elsewhere Effect: LEE
- To cope for this effect a global p-value is calculated
 - The global p-value is extracted by comparing $-\log(p_{\min}^{local})$ to a set of $-\log(p_{\min}^{local})$ generated using background-only **pseudo-experiments**



p^{global}: **fraction of PE** that gives a result higher than the one observed (p-value of p-value!)

$$P^{global} = fraction of (P^{PE}_{min} > P^{obs}_{min})$$

Kolmogorov-Smirnov test

The **KS** test is an **unbinned** method that uses **all the measured values** of variable x to test the compatibility of the data to a model.

- The **M** measured values \mathbf{x}_i are first sorted in ascending order: $\mathbf{x}_1 < \mathbf{x}_2 < ... < \mathbf{x}_M$
- The sample **cumulative distribution** is calculated as:

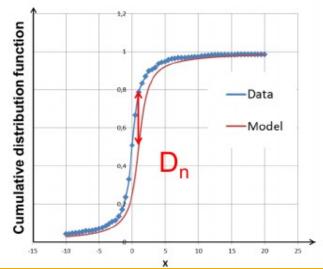
$$F_{\text{data}}(x) = \begin{cases} 0 \text{ if } x \le x_1\\ i/M \text{ if } x_i \le x < x_{i+1}\\ 1 \text{ if } x \ge x_M \end{cases}$$

The test compares **cumulative distribution** of the sample to that of the model. The **maximum distance** D_n between the two is the test statistics:

$$D_n = \sup_{x} |F_{\text{model}}(x) - F_{\text{data}}(x)|$$

The **p-value** of the KS test is given (for large M) by:

p-value =
$$2\sum_{r=1}^{+\infty} (-1)^{r-1}e^{-2Mr^2D_n^2}$$



Kolmogorov-Smirnov test - Example

Exponential p.d.f

$$f(x; \lambda) = \lambda e^{-\lambda x}, x > 0$$

- Data: λ=0.4 (500 events)
- Model: λ=0.35

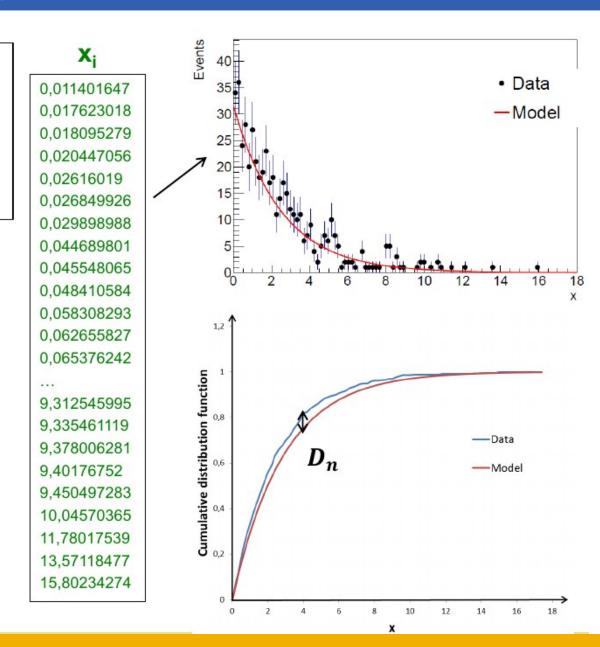
$$F_{\text{data}}(x) = \begin{cases} 0 & x \le x_1 \\ i/n x_i \le x < x_{i+1} \\ 1 & x \ge x_M \end{cases}$$

$$F_{\text{model}}(x) = 1 - e^{-\lambda x}$$

Max distance between cumulative distributions:

$$D_n = 0.0646$$

→ p-value = 0,03



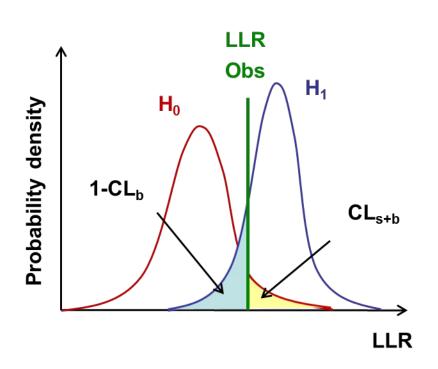
Hypothesis test: CLs method

Test of two hypothesis H_0 and H_1 using data

Likelihood of data given an hypothesis: $L(data|H_0)$ or $L(data|H_1)$

Neyman-Pearson lemma: optimal test statistics for hypothesis testing is given by (log) likelihood ratio

$$LLR = -2\log \frac{L(\text{data}|H_0)}{L(\text{data}|H_1)}$$



$$\int_{LLR_{obs}}^{\infty} f(t|H_0)dt = CL_{s+b}$$

$$\int_{-\infty}^{LLR_{obs}} f(t|H_1)dt = 1 - CL_b$$

 H_0 rejected at $(1-\alpha)$ $CL_{s+b} < \alpha$ confidence level if

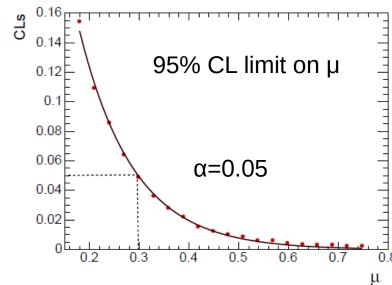
More robust test
$$CL_s = \frac{CL_{s+b}}{CL_b} < \alpha$$

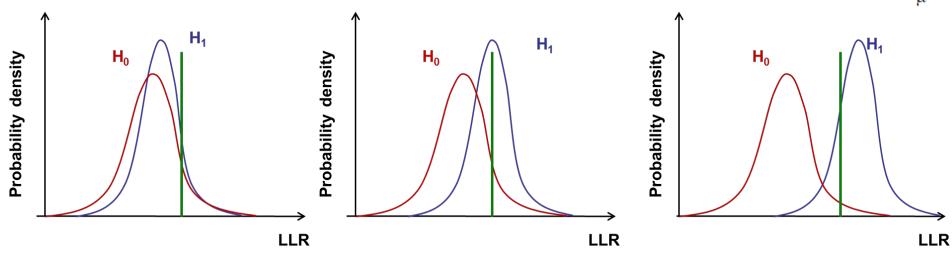
SOS 2021 34

Hypothesis test: CLs method

Testing **signal strenght** (µ):

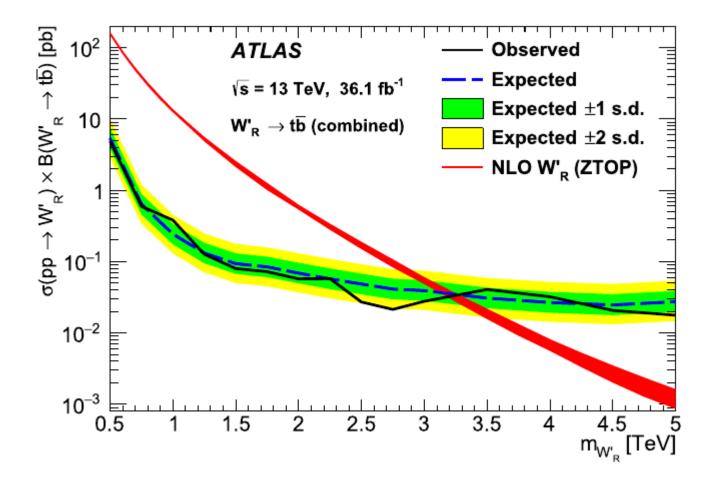
- Express number of event of **signal** as $s = \mu \times s_{nominal}$
- CLs test can be performed for increasing values of µ
- Exclusion limit on μ when CLs<α





Hypothesis test: typical HEP result

Here **95% C.L exclusion limit** on cross-section is calculated for each **signal mass** hypothesis from 0.5 to 5 TeV, for both **observed** data and **expected** background



Conclusion

In this lecture we saw **basic notions** of probability and statistics.

First step towards data analysis and statistical learning.

Simple notions in general but easy to forget!

Easy to **misunderstand** or **mishandle** as well ...

And some concepts are **more complex** than it seem.

Practice these notions by making your **own** calculations and coding!

Combining measurements

BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

- Find linear (unbiased) combination of results: $x = \sum w_i x_i$ with weights w_i that give minimum possible variance σ_x^2
- Account properly of correlations between measurements
- For Gaussian errors: method equivalent to χ^2 minimization

- Two measurements: $x_1 \pm \sigma_1$, $x_2 \pm \sigma_2$ with correlation ρ
- The weights that minimize the χ^2 : Cov. matrix

$$\chi^2 = \begin{pmatrix} x_1 - x & x_2 - x \end{pmatrix} \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}^{-1} \begin{pmatrix} x_1 - x \\ x_2 - x \end{pmatrix}$$

are:

$$w_1 = \frac{\sigma_2^2 - \rho \sigma_1 \sigma_2}{\sigma_1^2 - 2\rho \sigma_1 \sigma_2 + \sigma_2^2} \qquad w_2 = \frac{\sigma_1^2 - \rho \sigma_1 \sigma_2}{\sigma_1^2 - 2\rho \sigma_1 \sigma_2 + \sigma_2^2} \qquad (w_1 + w_2 = 1)$$

SOS 2018 40

BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

- Find linear (unbiased) combination of results: $x = \sum w_i x_i$ with weights w_i that give minimum possible variance σ_x^2
- Account properly of correlations between measurements
- For Gaussian errors: method equivalent to χ^2 minimization

- Two measurements: $x_1 \pm \sigma_1$, $x_2 \pm \sigma_2$ with correlation ρ
- The combined result is: $x = w_1x_1 + w_1x_2$
- And the uncertainty on the combined measurement is:

$$\sigma_x = \sqrt{\frac{\sigma_1^2 \sigma_2^2 (1 - \rho^2)}{\sigma_1^2 - 2\rho \sigma_1 \sigma_2 + \sigma_2^2}}$$

SOS 2018 41

BLUE method

Iterative method

- Biases could appear when uncertainties depend on central value of each measurement (L. Lyons et al., Phys. Rev. D41 (1990) 982985)
- Reduced if covariance matrix determined as if the central value is the one obtained from combination
 - Rescale uncertainties to combined value ex: for measurement 1, and category i: $\sigma_{i,1}^{rescaled} = \sigma_{i,1} \cdot x_1/x_{blue}$
 - Iterate until central value converges to stable value

SOS 2018 42

Single-top t-channel 8 TeV results

ATLAS [ATLAS-CONF-2012-132, 5.8 fb⁻¹]:

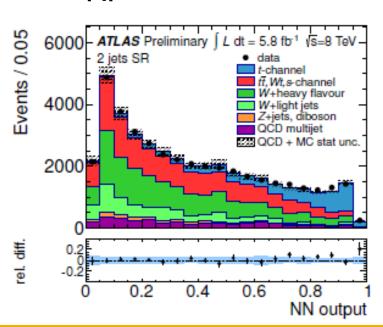
$$\sigma_{t}(t-ch.) = 95 \pm 2 \text{ (stat.)} \pm 18 \text{ (syst.)} \text{ pb} = 95 \pm 18 \text{ pb}$$

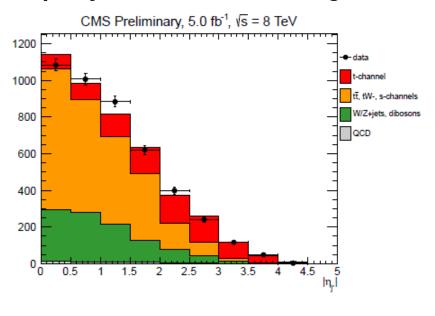
- Multivariate analysis with limited assumptions on simulations
- Fit of NN distribution in the data in e/μ+2/3 jet events, with 1-btag

CMS [CMS PAS TOP-12-011, 5.0 fb⁻¹]:

$$\sigma_{t}(t-ch.) = 80.1 \pm 5.7(stat.) \pm 11.0(syst.) \pm 4.0(lumi.) pb = 80.1 \pm 12.8 pb$$

- Cut-based analysis, data-driven background estimates (shapes, rates)
- Fit |η| distribution of forward jet in μ+2 jet events, with 1-btag





Uncertainties categories and correlations

6 categories of uncertainties. Correlation factor between ATLAS/CMS estimated for each.

Category	ATLAS		CMS		ρ
Statistics	Stat. data	2.4%	Stat. data	7.1%	0
	Stat. sim.	2.9%	Stat. sim.	2.2%	0
Total	3.8%			7.5%	0
Luminosity	Calibration	3.0%	Calibration	4.1%	1
	Long-term stability	2.0%	Long-term stability	1.6%	0
Total		3.6%		4.4%	0.78
Simulation and modelling	ISR/FSR	9.1%	Q^2 scale	3.1%	1
	PDF	2.8%	PDF	4.6%	1
	t-ch. generator	7.1%	t-ch. generator	5.5%	1
	tt generator	3.3%	a clinical Marian		0
	Parton shower/had.	0.8%		54	0
Total		12.3%	1	7.8%	0.83
Jets	JES	7.7%	JES	6.8%	0
1000431	Jet res. & reco.	3.0%	Jet res.	0.7%	0
Total		8.3%		6.8%	0
Backgrounds	Norm. to theory	1.6%	Norm. to theory	2.1%	1
	Multijet (data-driven)	3.1%	Multijet (data-driven)	0.9%	0
ALCONO.	× 2		W+jets, tt (data-driven)	4.5%	0
Total		3.5%	t in	5.0%	0.19
Detector modelling	b-tagging	8.5%	b-tagging	4.6%	0.5
	Emiss T	2.3%	Unclustered E _T ^{miss}	1.0%	0
	Jet Vertex fraction	1.6%			0
	and the same	Contract.	pile up	0.5%	0
	lepton eff.	4.1%	700 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		0
			μ trigger + reco.	5.1%	0
	lepton res.	2.2%	STREET STORES		0
	lepton scale	2.1%		17	0
Total		10.3%		6.9%	0.27
Total uncert.		19.2%	No.	16.0%	0.38

Combined t-channel single-top cross section

Sum covariance matrices in each category to obtain total covariance matrix.

$$\mathbf{C} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} 269 & 84 \\ 84 & 182 \end{pmatrix} \mathbf{pb^2}$$

Source	Uncertainty (pb)		
Statistics	4.1		
Luminosity	3.4		
Simulation and modelling	7.7		
Jets	4.5		
Backgrounds	3.2		
Detector modelling	5.5		
Total systematics (excl. lumi)	11.0		
Total systematics (incl. lumi)	11.5		
Total uncertainty	12.2		

Breakdown of uncertainties

$$\sigma_i^2 = w_1^2 \sigma_{i,1}^2 + 2w_1 w_2 \rho_i \sigma_{i,1} \sigma_{i,2} + w_2^2 \sigma_{i,2}^2$$

$$\sigma_{\text{t-ch.}} = 85.3 \pm 4.1 \text{ (stat.)} \pm 11.0 \text{ (syst.)} \pm 3.4 \text{ (lumi.)} \text{ pb} = 85.3 \pm 12.2 \text{ pb}$$

With
$$w_{ATLAS} = 0.35$$
 and $w_{CMS} = 0.65$, $\chi^2 = 0.79/1$

Overall correlation of measurements is $\rho_{tot} = 0.38$.

Summary plot

