The SVOM Mission for GRB Studies

Major questions for the next decade

Astrophysics

How black holes form relativistic outflows? What was the first stellar population? How the universe has been re-ionized?

Physics

......

What is the nature of the dark energy? Where UHE cosmic-rays are accelerated? Is the Lorentz invariance principle broken?

.....

GRB studies could provide unique answers

Scientific requirements

- Permit the detection of all know types of GRBs, with a special care on high-z GRBs and low-z sub-luminous GRBs
- Provide fast, reliable and accurate GRB positions
- Measure the broadband spectral shape of the prompt emission (from visible to MeV)
- Measure the temporal properties of the prompt emission
- Quickly identify the afterglows of detected GRBs, including those which are highly redshifted (z>6)
- Quickly provide (sub-) arcsec positions of detected afterglows
- Quickly provide redshift indicators of detected GRBs

Jacques Paul

JVOM **GRM: the gamma-ray spectrometer** 10 T=1sPhoton cm⁻² s⁻¹ keV⁻¹ 10⁻² 10⁻³ 10-5 10-6 10 100 **10**³ 104 Energy (keV) Average GRB spectrum with a 50-300 keV flux of 1 photon cm⁻² s⁻¹ Enable E_{peak} measurement up to ~ 500 keV SVOM – Instituto de Astronomia Colloquium – UNAM – 11 February 2009 Jacques Paul Slide 6

XIAO: the soft X-ray telescope

Expected XIAO light curves for a sample of representative afterglows

XIAO is sensitive enough to provide precise localizations for most GRBs

Jacques Paul

Space instruments required performances vom

	Spectral band	Field of View	location Accuracy	GRBs/yr
GRM	50keV-5MeV	2 sr	Not applicable	~80(TBD)
ECLAIRs	4-250 keV	2 sr	10 arcmin	~80
XIAO	0.3-2 keV	diameter 25 arcmin	10 arcsec	~72
VT	400-650 nm 650-950 nm	21 × 21 arcsec	1 arcsec	~64

Ground instruments

GWAC

Wavelength coverage: ~ 400-900 nm Limiting magnitude: ~ 15 (5σ, 10s) Overall field-of-view: ~ 90 deg. × 90 deg. East-GFT Diameter: ~ 100 cm

Field-of-view: ~ 23 arcmin × 23 arcmin Wavelength coverage: ~ 400-950 nm West-GFT Diameter: ~ 100 cm Field-of-view: ~ 30 arcmin × 30 arcmin

Photometric band: **B** V **R J H**

Photometric redshift of high-*z* GRBs

Jacques Paul

Space and ground instruments join to enable a unique coverage

SVOM Compared to SWIFT

Prompt emission measurement

- More sensitive below 20-30 keV
- E_{peak} measurement capability
- Multi-wavelength capabilities from visible band to MeV gamma rays

Afterglow emission measurement

- > 10 more sensitive in the visible
- Sensitive in the 650-950 nm band

Follow-up observations

- Dedicated follow-up robotic telescopes
- GRBs much easily scrutinized by the largest telescopes

SVOM: the successor of SWIFT...

SVOM The next gamma-ray burst mission

and the state of the second state of the second state of

- SVOM has successfully completed its phase A at the end of 2008
- SVOM is to be launched mid-2014
- SVOM will fly in an extremely favourable context: GLAST, JWST, VLT X-Shooter, SKA pathfinder, VIRGO, LIGO, IceCUBE, ANTARES