Rythme 1039 by Sonia Delaunay

Multi-messenger astrophysics

ISAPP School 2021

Relativistic astrophysics

Radioactively powered transients

Nucleosynthesis and enrichment of the Universe

Compact object formation and evolution

GW170817 Multi-messenger studies

Nuclear matter physics

S.D. Vergani - ISAPP School 2021

Gamma-ray bursts Relativistic astrophysics

Kilonova Radioactively powered transients

R-process

Nucleosynthesis and enrichment of the Universe

Compact object formation and evolution

GW170817 Multi-messenger studies

Nuclear matter physics

S.D. Vergani - ISAPP School 2021

An emitter moving at v ~ c, even if emitting isotropically in its rest frame, will strongly beam its radiation as seen by the observer.

Beaming angle : $\Omega = 4\pi$

<u>\</u>1/Г

V ~ C **F>>1**

v = 0

 $\Gamma = 1$

-

Credits @ D. Perley

 θ_{jet}

 $\theta_{\text{beam}} = 1 / \Gamma$

S.D. Vergani - ISAPP School 2021

S.D. Vergani - ISAPP School 2021

Achromatic break

Observer

 θ_{jet}

 $\theta_{\text{beam}} = 1 / \Gamma$

S.D. Vergani - ISAPP School 2021

S.D. Vergani - ISAPP School 2021

Ghirlanda+2019

Ð

radial or angular structure due to the interaction of the jet head with the merger ejecta

Choked jet (not successful) radial structure some degree of anisotropy $\Gamma_1 < \Gamma_2 < \Gamma_3$ $E_1 > E_2 > E_3$ $E_{jet} < E_{ejecta}$

S.D. Vergani - ISAPP School 2021

Structured Jet (successful) off-axis jet + angular structure $\Gamma_1 > \Gamma_2 > \Gamma_3$ $E_1 > E_2 > E_3$ $E_{jet} < E_{ejecta}$

Mooley+18: displacement of 2.7mas in 155 days

VLBI images

Ghirlanda+2019

radial or angular structure due to the interaction of the jet head with the merger ejecta

Choked jet (not successful) radial structure some degree of anisotropy $\Gamma_1 < \Gamma_2 < \Gamma_3$ $E_1 > E_2 > E_3$ $E_{jet} < E_{ejecta}$

S.D. Vergani - ISAPP School 2021

Structured Jet (successful) off-axis jet + angular structure $\Gamma_1 > \Gamma_2 > \Gamma_3$ $E_1 > E_2 > E_3$ $E_{jet} < E_{ejecta}$

successful structured jet

GRB170817 / GW170817 / KN afterglow?

- Are all BNS associated with SGRB?
- Are all SGRB associated with BNS?
- Are all SGRB associated with BNS similar to GRB170817?
- Is the jet structure universal?
- Are SGRB associated also with NSBH ?

- Burbridge+1957, Cameron+1957 : heavy elements produced by r-process
- Where?
- Core-collapse SNe? Compact binary mergers (Lattimer & Schramm 1974)?
- Rosswog+1999,2000 : dynamical ejecta in compact binary mergers producing heavy elements
- Li & Paczynski 1998 : radioactive decay of the neutron-rich nuclei in dynamic ejecta produce a macronova (also referred to as kilonova) a short lived optical - IR weak supernova-like signal.

• Eichler+1989 : SGRB - BNS

Creating heavy elements by neutron capture

A schematic representation of the s- and r-processes

Slow neutron-capture process: $\tau_{\beta} \ll \tau_{n}$ $N_{n} \sim 10^{7} - 10^{11} \text{ cm}^{-3}$ $T \sim 1 - 3 \ 10^{8} \text{K}$ $t_{irr} \sim 10 - 10^{4} \text{yr}$ Rapid neutron-capture process: $\tau_{\beta} >> \tau_{n}$ $N_{n} >> 10^{20} \text{ cm}^{-3}$ $T \sim 1 - 2 \ 10^{9} \text{K}$ $t_{irr} \sim 1 \text{s}$ τ_n = lifetime against neutron capture

 τ_{β} = lifetime against β^- decay

Credits @ S. Goriely

H			Big Bar fusi	ng on		Dying ow-m stars	ass	Exploding massive stars				Human synthesis No stable isotopes					He
Li 3	Be 4		Cos	mic		Mergi	ng	E	xploc	ling		B	C 6	N 7	0 8	F 9	Ne 10
Na	Mg		fissi	on		stars	on 🚪	d d	warfs			AI 13	Si	P 15	S	CI	Ar
K		Sc		V 23	Cr 24	Mn	Fe	Co 27	Ni 28	Cu 29	Zn	Ga	Ge	As 33	Se 34	Br	Kr 36
Rb	Sr	Y	Zr	Nb	Mo		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	53	Xe 54
Cs	Ba	°	Hf	Ta	W	Re	Os 76	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra ~									oc							
87	88		La 57	Ce 58	Pr 59	60 Nd	Pm	52 62	Eu	Gd 64	Tb 65	Dy 66	H0 67	Er 68	Tm 69	Yb 70	Lu 71
			Ac 89	Th 90	Pa	U 92	Np 93	Pu 94	Am ⁹⁵	Cm	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

- Burbridge+1957, Cameron+1957 : heavy elements produced by r-process
- Where?
- Core-collapse SNe? Compact binary mergers (Lattimer & Schramm 1974)?
- Rosswog+1999,2000 : dynamical ejecta in compact binary mergers producing heavy elements
- Li & Paczynski 1998 : radioactive decay of the neutron-rich nuclei in dynamic ejecta produce a macronova (also re-ferred to as kilonova) a short lived optical - IR weak supernova-like signal.

• Eichler+1989 : SGRB - BNS

Kilonova (KN) : AT2017gfo

First spectral identification of a KN

- radioactive decay of
 r-process nucleosynthesis
- BNS merger site for heavy element production in the Universe

Which heavy elements? Very difficult!

Kilonova (KN) : AT2017gfo

Watson+2019

- Are all KN like AT2017gfo?
- Will we be able to identify heavy elements?
- What is the mass produced?

Belczynski+2018

Time [Myr]	:	Z=0.03	L					
0.0	MS	ZAMS	MS					
	9.76 M _o	¥	8.05 Mo					
	9.65 Mo 🥖	RLOF	8.03 Mo					
26.8	HG		MS					
26.8	donor		1115					
	2.19 M _o	↓ ↓	15.49 Mo					
21.4	He 🪽		мс					
31.4	star	ECS	614					
	2.05 M _O	ECS	15.48 M _o					
31.4	NS	Y (MS					
	1.26 Mo	_ ↓	15.48 Mo					
		CE						
26 E	1.26 Mo		12.35 Mo					
30.5	NS		AGB					
36.5	1.31 Mo	J	donor 5.21 Mo					
		CE						
		¥						
		CCSN	He					
36.5	NS	. 🔹 🤺	star					
	1.31 M _o		5.20 Mo					
		¥						
36.5	NS		NS					
	1.31 M _o	I	1.39 M _o					
		¥						
5863	merger/short GRB/kilonova							

Belczynski+2018

High chance to host a BNS merger
massive (bright in NIR)
some SFR (bright in UV-VIS)

High chance to host a BNS merger
massive (bright in NIR)
some SFR (bright in UV-VIS)

Credit: Space Telescope Science Institute

Host galaxy observations and BNS rate

• Stellar evolution models

Credit: NASA

• Galaxy evolution simulations

Credit: Space Telescope Science Institute

The Electro-Magnetic (EM) counterpart quest

Detection Identification Characterization

Detection: necessary ... but no astrophysics

Identification: necessary + some astrophysics

Characterization : Top!

Merger of binary system of neutron stars NS-NS or BNS

host galaxy or globular cluster

Relativistic jet (Gamma-ray burst)

Merger of binary system of neutron stars NS-NS or BNS

host galaxy or globular cluster

Transients!

Relativistic jet (Gamma-ray burst)

Merger of binary system of neutron stars NS-NS or BNS

host galaxy or globular cluster

Relativistic jet (Gamma-ray burst)

Knowledge based on models and 1 event

S.D. Vergani - ISAPP School 2021

Detection

Mergers of binary systems of neutron stars NS-NS or BNS

Sky map & Distance

Mergers of binary systems of neutron stars NS-NS or BNS

Sky map & Distance

Mergers of binary systems of neutron stars NS-NS or BNS

Sky map & Distance

Mergers of binary systems of neutron stars NS-NS or BNS

Sky map & Distance

blue component (faster, blue optical filters)

merger ejecta

red component slower, neutron rich Near-infrared filters

Optical Filters

InfraRed

UBVRIJHK ugrizyJHK

UV

Light-curve

GW170817/AT 2017gfo

Light-curve

GW170817/AT 2017gfo

Apparent Magnitude

$$m_x = -2.5 \log_{10} \left(rac{F_x}{F_{x,0}}
ight)$$

 $L_{\nu} = 4\pi R^2 f$

Light-curve

GW170817/AT 2017gfo
Light-curve

GW170817/AT 2017gfo

Ejecta components Velocity of the ejecta Ejected Mass

First spectral identification of a KN

radioactive decay of
 r-process nucleosynthesis

 BNS merger site for heavy element production in the Universe

GW170817/GRB170817/AT2017gfo

adapted from Chornock+2019

blue component (faster, blue optical filters) red component slower, neutron rich Near-infrared filters

what we see depends on our viewing angle

Detection

I need observations that :

- cover the sky map
- reach the expected magnitudes
 (in a "small" amount of time)

N.B.: The telescope time is limited!!!

largest telescopes 🔶

Credit: ESO

largest telescopes 🔶

Credit: ESO

very small telescopes

Credit: SVOM

fainter objects (fluxes): intrinsically fainter or more distant

For the same amount of observing timeand time matters!

fainter objects (fluxes): intrinsically fainter or more distant

Lack of sensitive transient survey telescopes in the NIR

Do we have instruments withwide enough FOV

- enough sensitive
- (and rapid)?

~ maybe OK for very close ones

~ NO for the rest

~ OK for very close ones

~ NO for the far ones

OK except for the far ones

Do we have instruments withwide enough FOV

- enough sensitive
- (and rapid)?

P of success

Courtesy of Om Sharam Salafia 17.5 r band $\theta_{\rm view}/{\rm deg}$ 10-1 20.0 10.0 0.0 Flux density [m]y 30.0 3.4 ignitud€ 22.5 60.0 5.0 10⁻³ z=0.1 25.0 z=0.2 ര Ē 27.5 10-5 AB 30.0 32.5 10^{-7} 10⁻² 10^{-1} 10¹ 100 10² 10³ Post-explosion time [days]

- Viewing angle of the observer
- Jet structure
- Burst energetic
- Density of the inter-stellar medium

Courtesy of Om Sharam Salafia 17.5 r band $\theta_{\rm view}/{\rm deg}$ 10-1 0.0 20.0 10.0 Flux density [m]y] 30.0 3.4 ignitud€ 22.5 60.0 5.0 10⁻³ z=0.1 25.0 z=0.2 а́ 27.5 10-5 AB 30.0 32.5 10^{-7} 10⁻² 10^{-1} 10¹ 100 10² 10³ Post-explosion time [days]

- On-axis: good but we must be fast
- Off-axis/high z: (extremely) faint

Courtesy of Om Sharam Salafia

- On-axis: good but we must be fast
- Off-axis: faint

Courtesy of Om Sharam Salafia

If the localization is not precise we need satellites capable of rapidly scanning the sky

XRT FoV: 23.6 x 23.6 arcmin

MXT FoV: 1.1° x 1.1°

but ~ same exposure time to reach the same flux values!

- weak bursts peak earlier
- lower frequencies —> lower peak flux
- lower frequencies peak later

- More time
- Faint but ~doable for small/intermediate off-axis angles
- large off-axis angles: good localization needed

S.D. Vergani - ISAPP School 2021

FoV: All sky Localization: ~10-10² deg²

FoV: All sky Localization: ~10-10² deg²

Localization: ~arcminutes

If on-axis & detected by Swift: immediate X-rays & optical observations Localization: arcsec precision!

On-axis with detection of gamma rays best case for relativistic jet (& host galaxy) detection

BUT

We may miss the KN! (and many aspects of jet physics)

Relativistic jet (Gamma-ray burst)

Courtesy of Om Sharam Salafia 17.5 r band $\theta_{\rm view}/{\rm deg}$ 10-1 20.0 10.0 0.0 Flux density [m]y] 30.0 3.4 ignitud€ 22.5 60.0 5.0 10⁻³ z=0.1 25.0 z=0.2 ര Ē 27.5 10-5 AB 30.0 32.5 10^{-7} 10⁻² 10^{-1} 10¹ 10⁰ 10² 10³ Post-explosion time [days]

- On-axis: good but we must be fast
- Off-axis/high z: (extremely) faint

Kilonova (KN)

adapted from Chornock+2019

On-axis with detection of gamma rays best case for relativistic jet (& host galaxy) detection

BUT

We may miss the KN! (and many aspects of jet physics)

Relativistic jet (Gamma-ray burst)

P of success

Viewing angle Sky map extent

Distance

Burst Energetic

ISM density (excluding very high densities)

Host Galaxy

Host Galaxy

Belczynski+2018

High chance to host a BNS merger
massive (bright in NIR)
some SFR (bright in UV-VIS)

LIGO-Virgo-Kagra events

Mergers of binary systems of neutron stars NS-NS or BNS

Detection

Galaxy surveys (all-sky) with information on distance and magnitudes

We observe galaxies in the sky map by prioritizing:high probability sky map regions

• galaxies with expected distance and properties

Host Galaxy

Host Galaxy

NIR Galaxy luminosity function

fainter objects (fluxes): intrinsically fainter or more distant

Detection

Galaxy surveys (all-sky) with information on distance and magnitudes

We observe galaxies in the sky map by prioritizing:

- hígh probability sky map regions
- galaxies with expected distance and properties

Issue: Catalogue incompleteness

Large sky map/distant event —> large number of galaxies Limited telescope time + limited time window to detect the KN Issue: **Observation incompleteness**

example from O3 run

With transient surveys + Dedicated galaxy observations

example from O3 run

Ackley+2020

example from O3 run

With transient surveys + Dedicated galaxy observations

Identification

We need **light-curve or spectrum** (supposing that models are correct)

faint object and/or many candidates
how can we identify that it is the counterpart?

large localization: many transients! faint: just one point radio: slow variability

- Time association!
- Many transients
- Late time (faint at other wavelengths)

Multi-wavelength strategy with the best telescopes needed Ok for few objets, not for many

Kilonova (KN)

adapted from Chornock+2019

Spectrum only with largest telescopes Ok for few objets, not for many

Detection: necessary ... but no astrophysics

Identification : necessary + some astrophysics

 H_0 , some spectral features, some rough properties of the KN ejecta (blue component, velocity,...)

Characterization : Top!

Ho, some spectral features II ye high scientific blue comportentially high perties of the KN ejecta return! <u>Characterizaticill keep trying</u>

Thank you!

Relativistic jet (Gamma-ray burst)

GW170817/GRB170817

Relativistic jet (Gamma-ray burst)

GW170817/GRB170817

Relativistic, structured jet

host galaxy or globular cluster

Distance information used for H₀

Environment

Evolutionary channel studies

Credit: Space Telescope Science Institute

Kilonova (KN)

shocked dynamical v ~ 0.2c-0.3c M ~ 0.01 M_☉

tidal tail v ~ 0.2c-0.3c M ~ 0.01 M_®

neutron star + neutron star prompt collapse to black hole