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Overview

● Overview of GW data analysis challenges
● General approaches to these challenges
● Challenges from current analyses

○ LIGO & Virgo
● Expected challenges

○ LISA
○ ET & CE
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The basic problem
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Measurement Data analysis
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Models
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Astrophysical
models
Source dynamics,
number of sources,
radiation emission 
process…

Detector model
Noise properties,
response geometry,
calibration…

Messenger model
Number of DoF, propagation 
speed, absorption, lensing…

Model considerations
● Amount of physical detail
● Number of parameters
● Prior knowledge
● Computational cost

“All models are wrong;
some are useful”

“[…] as simple as possible,
but not simpler”
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https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong


Data analysis

What should happen inside      ?

1. Predict what the data would look like given a certain model
2. Calculate how close that prediction is to the data
3. Select which model, or which choice(s) of parameters, best represents reality

Possible ways:

● Likelihood approach
○ Compute P(data|model,parameters) ← data - model(parameters)
○ Maximize or sample/integrate over parameters

● Machine learning approach
○ Train a classifier by showing it many examples of simulated data
○ Apply classifier to observational data

In both cases, we need many evaluations of the model
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Assuming additive Gaussian noise, P(data|model,parameters) is something like

Likelihood
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Covariance of multivariate 
Gaussian realization

Data vector Model vector

General challenges:
● Assumption of Gaussian noise
● Models predicting the same data (degeneracies)
● Large size of h and 𝚺



Complexity of compact binary merger models

Inspiral vs inspiral-merger-ringdown

No spins, aligned spins, misaligned spins

Fundamental quadrupole mode vs 
higher-order modes

BH-only vs NS matter

Quasicircular orbit vs eccentric orbit

Environmental effects
(SMBH, AGN disk, DM halo)

Deviations from general relativity
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Numerical relativity

(Semi)analytic models (pN, EOB)



Complexity of compact binary merger models
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Dietrich et al 2018 (arXiv:1806.01625) & http://www.computational-relativity.org

F. Foucart

https://arxiv.org/abs/1806.01625
http://www.computational-relativity.org/


Complexity of detector models

Do the detectors move during the duration of the signal?
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LSC & Virgo 2021
(arXiv:2010.14527)

Binary neutron star inspiral
Duration (20 Hz → 1 kHz): ~160 s
→ Earth rotates by less than 1 deg
→ Antenna patterns approximately constant

Continuous-wave GW from a rotating neutron star
Duration: entire observation period!
→ Detectors constantly rotating, Earth orbiting the Sun
→ Time-dependent modulation of signal

LSC & Virgo 2020

https://arxiv.org/abs/2010.14527
https://www.ligo.org/science/Publication-O3aBinaryCW/


Complexity of detector models

How does the gravitational wavelength compare to the size of the detectors?
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fGW ≲ 1 kHz, 𝛌 ≳ 300 km, LVirgo = 3 km
→ Long-wavelength approximation
→ 

fGW ~ 0.1 Hz, 𝛌 ~ 3×109 m, LLISA ~ 2.5×109 m
→ Wavelength comparable to detector size
→ 

LISA 2017 
(arXiv:1702.00786)

https://arxiv.org/abs/1702.00786


Complexity of detector models

Do the statistical properties of the
detector noise change over the
duration of the signal?

Do the detectors produce glitches
that look like astrophysical signals?

How much do you trust
the calibration of the detectors?

Are data gaps frequent enough
to intersect the astrophysical signals?
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Cabero et al 2019
(arXiv:1901.05093)

https://arxiv.org/abs/1901.05093


A very basic challenge

● 1 month of LIGO Hanford, LIGO Livingston and Virgo data with Gaussian and 
stationary noise (PSD known) sampled at 1024 Hz → ~109 samples

● Hypothesis 0:
No astrophysical signals; data is just detector noise
→ No parameters

● Hypothesis 1:
Data is detector noise + 1 quasicircular BBH merger with zero spins
→ 8 unknown parameters

● Hypothesis 2:
Data is detector noise + 2 quasicircular BBH mergers with zero spins
→ 16 unknown parameters

● …
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A very basic challenge

Which of those models are supported by the data?

→ Bayesian model selection: compute the evidence for each model,

…then compare the evidences weighted by prior probabilities of the models.
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Likelihood Prior
Parameter vector



A very basic challenge

How does the likelihood look like
over the integration domain?

The integration must resolve
the peak of the signal!
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Peak due to a signal

Fluctuations from noise

Hypothesis 1 → Integral over 8 dimensions
Hypothesis 10 → Integral over 80 dimensions

GW150914



A very basic challenge

Suppose that:

● We can resolve the peak by scanning just 10 points per dimension.
● We must complete the analysis in 1 month using a single-core computer.

Then

● For hypothesis 1, we need to calculate the likelihood at 108 points
→ Must calculate one likelihood value in ~10 ms ✔

● But for hypothesis 80, we have 1080 points!
→ One likelihood value in ~10-74 s ✘

Compare with the clock period of a 3 GHz CPU core.
Even a cluster of 10000 CPU cores will be useless!

…and remember that we have 109 data samples, with ideal noise with known PSD.
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A cute CPU, but not good
for our problem



A very basic challenge

Suppose we magically manage to carry out the 
computation, and find support for hypothesis 1.
What can we conclude about the masses of that 
BBH merger?

→ Bayesian inference: compute the
posterior distribution for the BBH model over its 
8-dimensional parameter space, then marginalize 
over all parameters except the two masses.

And we have another integral over 6 dimensions!
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Marginal posterior distribution
for the component masses

of GW170814 (LSC & Virgo 2017)



So what can we do?
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Break a giant problem into many small problems

Solving the problem as presented is clearly impossible… But do we have to?

● Do the N possible astrophysical signals “interfere” with each other?
Hint: are their peaks in the likelihood well separated?

● Divide months of data into ~1 hour long segments
● Assume signals are rare: zero or one per segment
● Separate the problem of searching from the problem of parameter estimation

a. Use simpler models to roughly identify the most challenging parameters
b. Reduce the data to what is minimally necessary to study a possible signal
c. Use an expensive, more accurate model to analyze the reduced data
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Simplify the models as much as possible

● Reduce the amount of physics at the 
source → fewer parameters / smaller prior 
volume / fewer computations

○ Example: neutron stars have small spins and 
merge at ≳1 kHz

● Phenomenological models
○ Example: search using wavelets instead of 

accurate compact binary merger waveforms
● Idealize the detectors

○ Example: stationary Gaussian noise, 
evenly-sampled data
→ 𝚺 becomes diagonal in the Fourier domain
→ 𝚺-1 becomes a trivial operation
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LSC and Virgo 2020



Use clever methods to explore N-dimensional likelihoods

● Analytic maximization or integration
● Efficient placement of grid points
● Markov-chain Monte Carlo, parallel tempering, 

nested sampling, particle-swarm optimization, 
differential evolution, genetic algorithms, 
transdimensional MCMC… 20

143 grid points99 grid points
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Carefully evaluate the number of operations required

● Example: Fourier transform
○ Naive Discrete Fourier Transform → Complexity ~N2

○ Fast Fourier Transform → Complexity ~N lnN (Gauss-Cooley-Tukey algorithm)

● Take 1 hour segment of data sampled at 2048 Hz → 7×106 samples
● DFT: ~1013 operations
● FFT: ~108 operations
● What looks like a one-day problem is really a one-second problem
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https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm


Make sure the code is implemented efficiently

Avoid unnecessary operations
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for data_segment in data:
    for params in template_bank:
        template = generate_waveform(params)
        snr = matched_filter(data_segment, template)
        find_peaks(snr)

for params in template_bank:
    template = generate_waveform(params)
    for data_segment in data:
        snr = matched_filter(data_segment, template)
        find_peaks(snr)

Which version requires
more calculations?



Make sure the code is implemented efficiently
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Example of Python code profiling (gprof2dot):
~97% of time spent doing matched filtering

~50% doing FFTs

Know where your code is spending time

Amdahl’s law

Optimize only
where useful

https://github.com/jrfonseca/gprof2dot
https://en.wikipedia.org/wiki/Amdahl%27s_law


Use the appropriate computational tools

● General-purpose libraries that are already optimized
○ Numpy/Scipy, FFTW, GNU Scientific Library

● Computer clusters + job schedulers & workflow management tools
○ Open Science Grid
○ HTCondor, Pegasus, MPI
○ Talk to computing experts in LIGO, Virgo and KAGRA

● Single-instruction-multiple-data
● Many-core CPUs, GPUs
● Dedicated (“exotic”) hardware

○ FPGAs
○ ASICs
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https://opensciencegrid.org/
https://research.cs.wisc.edu/htcondor/
https://pegasus.isi.edu/
https://www.open-mpi.org/


Sacrifice some science to simplify the problem

Do you expect to find signals in a particular region of the parameter space?

Would you learn more things by exploring a particular region?

Are regions already excluded by previous observations?

Are some regions much more expensive to explore than others?
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Examples from present analyses
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Stellar-mass compact binary mergers in LIGO/Virgo
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Assumptions:
● Rare signals

Non-overlapping

● No precession
Spins aligned with the orbital axis

● No eccentricity
● No matter effects

Neutron stars treated as black holes!

● Ignore higher-order modes
● Short signals

Antenna pattern functions and time delays
are time-independent

● …and others

Complete model for signal observed by a detector:

With parameter vector 𝛌 comprising only:
● Amplitude

(incl. distance, orbital orientation, sky location)
● Merger time
● Merger phase
● Two masses
● Two spin components

Such a waveform can be evaluated in 1-10 ms.



Stellar-mass compact binary mergers in LIGO/Virgo

28

Exploration of parameter space
● Amplitude → Analytic
● Merger time → Fast Fourier Transform
● Merger phase

→ Two templates out of phase by 𝜋/2 
(also via FFT)

● Masses and spins
→ Bruteforce grid search over ~4×105 
points (template bank)

Dal Canton & Harry 2017 (arXiv:1705.01845)
Keppel 2013 (arXiv:1303.2005)

Roy et al 2017 (arXiv:1702.06771)

https://arxiv.org/abs/1705.01845
https://arxiv.org/abs/1303.2005
https://arxiv.org/abs/1702.06771


Stellar-mass compact binary mergers in LIGO/Virgo
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6 months of data, 2048 samples per second, 3 detectors

Divide data into 1000 s segments → 5×104 segments

4×105 templates

→ We need to do 2×1010 independent FFTs (plus cheaper operations)

Want to finish in 10 days?
→ Need a machine that can do 2×104 FFTs per second
→ Divide the workload over 104 CPU cores

In principle, this is definitely feasible 👍 In practice, remember those words about 
efficient code and appropriate computing tools ⚠



Stellar-mass compact binary mergers in LIGO/Virgo
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Candidates from search phase → Parameter estimation using nearby data

1. Assume masses and spins are known
→ Approximate spatial localization in seconds
(Singer & Price 2016, arXiv:1508.03634)

2. Relax many assumptions; use waveform models with precession, 
higher-order modes, matter effects…
→ Full parameter estimation in hours to many days (for a single event!)
Cost typically dominated by the waveform model

⚠ More sensitive detectors → higher detection rate → higher cost of PE ⚠

https://arxiv.org/abs/1508.03634


Stellar-mass compact binary mergers in LIGO/Virgo
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● Reduced order quadratures
Smith et al 2016 (arXiv:1604.08253)

● Multiband interpolation
Vinciguerra et al 2017 (arXiv:1703.02062)

● Relative binning / Heterodyning
Zackay et al 2018 (arXiv:1806.08792)

Stationary Gaussian noise → Whittle likelihood

https://arxiv.org/abs/1604.08253
https://arxiv.org/abs/1703.02062
https://arxiv.org/abs/1806.08792


GW190521: an example of model degeneracy

After two years, what happened is still under debate.

● A merger of BHs with precessing spins
○ LIGO & Virgo 2020 (arXiv:2009.01075)

● A merger of BHs in an AGN disk
○ Graham et al 2020 (arXiv:2006.14122)

● A merger of BHs in an eccentric orbit
○ Romero-Shaw et al 2020 (arXiv:2009.04771)
○ Gayathri et al 2020 (arXiv:2009.05461)

● A head-on collision of boson stars
○ Calderon-Bustillo et al 2021 (arXiv:2009.05376)

…essentially the same signal in LIGO & Virgo data.
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https://arxiv.org/abs/2009.01075
https://arxiv.org/abs/2006.14122
https://arxiv.org/abs/2009.04771
https://arxiv.org/abs/2009.05461
https://arxiv.org/abs/2009.05376


Continuous GWs from unknown pulsars in LIGO’s O3a run

● LIGO & Virgo Collaborations, 2021 (arXiv:2012.12128)
● Only use LIGO data, not Virgo
● Impossible to explore the whole space → Focus on a reduced portion
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https://arxiv.org/abs/2012.12128


Mergers of sub-solar-mass compact objects in LIGO/Virgo

● LIGO & Virgo Collaborations, 2019 
(arXiv:1904.08976)

● ~106 templates
(~2x BNS-BBH-NSBH searches)

● Start templates at 45 Hz
instead of the typical ~20 Hz

● 8% SNR loss → ~22% reduction
in sensitive volume compared to 
higher-mass searches

● Limited range of chirp mass explored
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https://arxiv.org/abs/1904.08976


Compact binary mergers with precession in LIGO/Virgo

● Harry et al 2016 (arXiv:1603.02444), Indik et al 2017 (arXiv:1612.05173)
● ~10× more templates than aligned-spin banks
● Not yet systematically applied to real data
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https://arxiv.org/abs/1603.02444
https://arxiv.org/abs/1612.05173


Examples from the future

36

You (and your students) will have to deal with these!



3G detectors: long, loud, frequent inspirals

37
Maggiore et al 2020 (arXiv:1912.02622)

https://arxiv.org/abs/1912.02622


3G detectors: long, loud, frequent inspirals
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Maggiore et al 2020 (arXiv:1912.02622)

$ lalapps_chirplen --m1 1.4 --m2 1.4 --flow 20
0: Reached requested termination frequency
fStart according to Tev = 1.999983e+01 Hz
fStop  according to Tev = 1.513428e+03 Hz
length according to Tev = 1.607861e+02 seconds
Ncycle according to Tev = 5144.283297

$ lalapps_chirplen --m1 1.4 --m2 1.4 --flow 2
0: Reached requested termination frequency
fStart according to Tev = 2.000024e+00 Hz
fStop  according to Tev = 1.499925e+03 Hz
length according to Tev = 7.370359e+04 seconds
Ncycle according to Tev = 236079.041636

https://arxiv.org/abs/1912.02622


3G detectors: long, loud, frequent inspirals

● Binary neutron star mergers in band for hours
○ Detector motion no longer negligible
○ Current bruteforce matched filtering likely prohibitive
○ Regimbau et al 2012 (arXiv:1201.3563)

● One merger every 1-10 minutes
○ Overlap between signals
○ Current search methods may no longer apply
○ Current approach to parameter estimation will be impossible

● Events with SNR ~ 100
○ Statistical uncertainties may become smaller than model systematics
○ Source of “noise” for weaker signals?

● ≳3 orders of magnitude larger cost (CPU and RAM)
● Bagnasco et al 2020
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https://arxiv.org/abs/1201.3563
https://gwic.ligo.org/3Gsubcomm/documents/GWIC_3G_Report__Gravitational_Wave_Data_Analysis_Computing_Challenges_in_the_3G_Era_copy_Sep_2020.pdf


LISA: a signal-dominated observatory
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LISA 2017 
(arXiv:1702.00786)

≳104 overlapping signals …including very loud ones

https://arxiv.org/abs/1702.00786


Supermassive BBHs in LISA
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Marsat et al 2021 (arXiv:2003.00357)

https://arxiv.org/abs/2003.00357


Supermassive BBHs in LISA
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Marsat et al 2021
(arXiv:2003.00357)

Parameter estimation neglecting
LISA motion and higher-order modes

Extreme degeneracies make the 
likelihood very complicated

https://arxiv.org/abs/2003.00357


Supermassive BBHs in LISA
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Marsat et al 2021
(arXiv:2003.00357)

Parameter estimation
including LISA motion,

with dominant mode only
or with higher-order modes

https://arxiv.org/abs/2003.00357


Extreme-mass-ratio inspirals in LISA
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Chua et al 2021 (arXiv:2008.06071)Berry et al 2019 (arXiv:1903.03686)

● Extremely rich and 
complicated orbits

● Long-lived signals
● Need a waveform 

model accurate over 
~104-105 orbits, and 
computationally cheap

● Transient resonances 
complicate the use of 
adiabatic 
approximations

● These signals also 
overlap with all the 
other ones…

https://arxiv.org/abs/2008.06071
https://arxiv.org/abs/1903.03686


Stellar-mass compact binary mergers in LISA

● Years-long signals
→ LISA moves during them

● Chirping, not narrow-band
● High-frequency → Wavelength 

comparable to detector size
● Precession and eccentricity

→ 17 params for each signal
● Relatively weak (SNR ~10)
● Environmental effects?

→ More parameters
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Moore et al 2019
(arXiv:1905.11998)

Toubiana et al 2020
(arXiv:2007.08544)

https://arxiv.org/abs/1905.11998
https://arxiv.org/abs/2007.08544


LISA data analysis: iterative search and subtraction
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Search for a loud signal

Anything found?

Subtract from data

End

No Yes
● Sequential, not parallelizable
● Need models that subtract the entire 

signal reliably
Parameter estimation 



LISA data analysis: simultaneous global fit
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● Transdimensional MCMC: handle models 
with varying number of parameters

● Separation of sources where possible
● Approximations and optimizations to 

speed up the likelihood
● Demonstrated for one class of LISA 

sources; more work needed for the full 
solution

Littenberg et al 2020
(arXiv:2004.08464)

https://arxiv.org/abs/2004.08464


Preparing for the challenges

Simulate the expected data!

● CBC rates known fairly well
● Keep up with modern signal models; include as much physics as possible
● LISA data challenge: https://lisa-ldc.lal.in2p3.fr/
● Need something equivalent (up to date) for 3G detectors
● Multi-observatory data challenges?
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https://lisa-ldc.lal.in2p3.fr/


There are more challenges to talk about…

● Unknown/unexpected signals
● Other detectors

○ Pulsar timing arrays
○ Lunar GW detectors
○ NEMO

● Multimessenger astronomy
○ Organizing joint observations
○ Reducing the latency of reporting results

● Organizing results for ~106 events

…and potential solutions as well

● Machine learning
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Wikimedia / AstroAnthony with no modifications

https://commons.wikimedia.org/wiki/File:Road_to_the_stars.jpg

