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(. Perspectives (2020’s)

e Virgo and LIGO being upgraded (Advanced Virgo+ and A+)
e Goal: reach a BNS range of 200-300 Mpc in the mid-2020
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Best O3a: 51 Mpc (Apr 5,/2019)
Best O3b: 60 Mpc (Feb 20, 2020)
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(@ Perspectives (2020’s) @

e LIGO-Virgo-KAGRA (LVK) working in a network as a single detector
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rgo-+

(@)=  Advanced Virgo+: content & schedul§p

e Two phases project

€ Phase | (before O4 run/2022)
» Mainly an upgrade to reduce quantum noise: no mirrors change
» Reduction of technical noises
» Preparation of Phase Il
€ Phase Il (before O5 run/2025)
» More invasive upgrade to reduce thermal noise: mirrors change

2019 2020 2021 2022 2023 2024 2025 2026
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Installation
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(. Detection principle

Gravitational wave

U

Mirror displacement

U
Light phase shift

U

Light power variation
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(= More details on detection principle

rgo-+

e “Free falling masses”
€ Mirrors suspended as pendulum

Mirror {

Light

LASER Detection
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(. Orders of magnitude

e Gravitational wave amplitude
@ Ex. GW150914: h~10-2

e Mirror displacement: 3 1018 m
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e Power variation on photodetectors: 2 108 W
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(@) Competing noises

rgo-+

e Broadly speaking two categories

e Readout noises
€ Produce a variation in the power measured by the photo-detectors without a mirror displacement

e Displacement noises
€ Produce a real displacement of the mirrors
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(@

e Measurement of flux of photons reaching the photodetector

€ Shot noise

. 4
Phase signal A¢, = - hL

A

Heisenberg principle  Ag,, >

ignal > Noi 1 A
Signa olse h>

A = laser wavelength

VN

2hw

Z4TL’

Sensitivity improve when:

€ Arm length L 1
€ Laser power P 1

\

P

N = number of
photons used

P = laser power

Shot noise
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(. Optical amplification

e Optical signal amplification
€ Fabry-Perot cavities in the arms
» Increase equivalent arm length Fabry-Perot

€ Power recycling
» Increase effective laser power

€ Signal recycling (not shown)
» Enlarge detector bandwidth

Recycling
mirror
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rgo-+

((@)} Quantum description of shot noise @

e Laser field in quantum optics

Electric field litud s
ic ric field amplitude AX,
\ )\ | &
X Heisenberg uncertainty principle
Coherent state — ‘ J » Time > X4 AX{.AX, =1
Electric field amplitude
1 X,:=phase
AXZ AXl = AXZ = 1
Vacuum state > Time » X, :=amplitude
AX,
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rgo-+

((@)}c Quantum description of shot noise %

e Signal detection requires to measure electric field at the interferometer output

e Vacuum fluctuations enter from the
iInput port
€ No effect since the ITF is on the dark fringe

e Vacuum fluctuations enter also from
the output port !

€ Phase fluctuations limit the phase measurement
» Shot noise

» Smaller effect for larger laser power
€ Amplitude fluctuations create radiation pressure Vacuum
fluctuations on the mirrors fluctuations
» Radiation pressure noise from the:
Larger effect for larger laser power - Input port
» Larg g P _ output port
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((@)iiza Quantum noise

e Quantum noise = Shot noise + Radiation pressure

e Heisenberg principle

@ If shot noise U, then radiation pressure 1
(and viceversa)

shot noise

_Jp

) shot noise with
" 100x increased laserpower]
N RN

e Standard quantum limit
€ Decreases as the mirror mass is increased

Linear noise spectral density [1/ VHz]

e |s it possible to circumvent the
guantum limit?

—_—

Q
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Frequency [Hz]
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(@)= Squeezed vacuum state @

e Yes, with squeezed vacuum states
€ Can be produced using non-linear crystals

Squeezed vacuum state

s @‘I I l:flr‘:‘—‘ Phase adjustment for
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(@) Use of squeezed vacuum state

rgo-+

e Inject phase squeezed vacuum from the output port

e Sgueezed vacuum
€ Decrease shot noise
€ Increase radiation pressure noise

€ Equivalent to more power

» Without the disadvantage of thermal deformation
€ Limit:

» amount of feasible squeezing

» optical losses

R

Squeezed vacuum/

e Used both at LIGO and Virgo to reduce
the shot noise
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(. Virgo configuration during 03 @

WE

e Power recycled Fabry-Perot interferometer
€ Marginally stable recycling cavity

e Laser solid state amplifier Input
@ Able to deliver 90 W e
€ 25 W into the interferometer T
e 150 m input mode-cleaner wi
. . CpP
e Monolithic glass output mode-cleaner raraday cP NE
. 100w Isolator \ BS I
e In-air squeezed vacuum source ZL_F—%L‘ZEZ m 2 M]_—[
PRM POP

[El _______________ ——1 Squeezed
light source

Output X[
Mode Cleaner

Photodiode [&)]
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(@)= LIGO configuration during O3 @

e Dual recycled Fabry-Perot interferometer ETMY

€ Stable recycling cavities
NY-arm

e Laser solid state amplifier
9 MHz 118 MHz
€ Able to deliver 70 W L

5 MHz ITMs

€ 40-50 W into the interferometer %@ IMC PRM - o ETMX
e 33 m input mode-cleaner — /—l
e Composite output mode-cleaner PSL EOM
e In-vacuum sgueezed vacuum source

REFL POP

OPO 'g‘ """""""
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o

(@) Virgo sensitivity during O3

irgo—+

e Noise budget (after subtraction)

e Main contributions
€ Quantum noise
€ Thermal noise
€ “Flat noise™, not understood
€ Control noise

STRAIN NoiseBudget; gps = 1265158818 (2020-02-08 01:00:00 UTC)
T T T T | T |

¥

» Larger at lower frequencies %
» Around 100 Hz mostly dueto 2 -
sidebands amplitude noise £ Y
] h!}: gl \ — -
| | | s m NS 66Mpc
i I J I A 0N ._,a‘-_ sc t noise" estimate 7:
---------- WRNTh ! |l (1] - \
== ﬂ o :__l , . l| T":/ l-d": emodulation |
| Jw : r‘t y 1§ ‘ - Lk L _.J SC
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(@ LIGO sensitivity during O3

e Noise budget (LLO) '

=== Measured noise (03) ®  Output beam jitter
M . t . b t e Sum of known noises ® Scattered light
® aln contributions _17 = Quantum ® Laser intensity
. 10 =—— Thermal ®  Laser frequency
‘ Quantum noise Seismic ® Photodetector dark
. . = Newtonian ® Output mode cleaner length
‘ Mirror thermal noise Residual gas ® Penultimate-mass actuator
. ® Auxiliary length control Stray electric fields
‘ CO n'[I‘O| noise ® Alignment control 01
EN 10_18 | I ® [nput beam jitter 02

» Length control
» Alignment control g

€ Residual gas noise (at LLO)

Frequency [Hz]
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(=, Use of squeezed vacuum state

e Inject phase squeezed vacuum from the output port

e Sgueezed vacuum
€ Decrease shot noise
€ Increase radiation pressure noise
€ Equivalent to more power
& Limit:
» amount of feasible squeezing
» optical losses

e Used both at LIGO and Virgo to reduce
the shot noise

e Is it possible to reduce both shot noise /
and radiation pressure noise? Squeezed vacuum
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(=, Use of squeezed vacuum state

e YES, inject frequency dependent squeezed vacuum from the output port

€ Phase squeezing at high frequency
€ Amplitude squeezing at low frequency

€ Decrease both shot noise
and radiation pressure noise

e How?
€ Generate squeezed vacuum state
€ Reflect on an high finesse optical cavity
€ Done!
€ Limitation: optical losses in the cavity

e Currently being built at Virgo and at LIGO

/ f>f,
Frequency dependent

squeezed vacuum
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(@) Freqguency dependent squeezing

irgo—+

e AdV+ and A+ will use we
frequency dependent squeezing
Input
Mode
Cleaner
T wi
CP
100W Tgc:?adt?r( \ BS TP - NE
Laser oRM POP
4-k---]
<rM| Filtering cavity Fl’equency
+—Dependent v
______________ @ » Squeezing

Output
Mode Cleaner

Photodiode [&5]
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(. Quantum noise reduction system
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(= Quantum noise reduction system @

e (Goal: use frequency dependent squeezing in AdV+ Phase |

Filter cavity

Data acquisition & control (expansion)

Vacuum
Source




(. Quantum noise reduction system @

Plan: operate frequency dependent
squeezing by O4




rgo-+

(@%=.  Quantum noise reduction system

e Similar plan at LIGO

T

|

e e e e b e o et et e s e = = Y
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(. Virgo-LIGO sensitivity during O3 @

e One remarkable difference i~ .
e Detector bandwidth —— LIGO Hanford

] _ . | - LIGO Livingston
e Due to use of signal recycling 107°° gt ——  Virgo t
In LIGO 1\ |

10-21 4

i . L

Strain [1/+/He|

10—22;~

10—23;m

1= _ ——r——r——rr ] ———
10 3 1 02 1 03
1 Frequency [Hz]
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WE
Best O3a: 51 Mpc (Apr 5,/2019)
Best O3b: 60 Mpc (Feb 20, 2020}
Od4high: 80 Mpc
Odlow: 115 Mpc
OShigh: 145 Mpc
1021 O5low: 260 Mpc
Input _
Mode 3
Cleaner Z 0%
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(o) Laser power increase in AdV+

e Fiber amplifier |
€ Can deliver more than 130 W e

@ Excellent beam quality ot %T%—,ifi?;i
@ Compliant power/frequency  cieoner @
stability
e (Goals
€ 40-50 W for O4
€ 60-80W for O5 N Faraday \
Laser Upgrade v/ kaser PRM POP
SRM|
Output

Mode Cleaner

Photodiode [&5]
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((@))c-:;; Readout noises

e Shot noise
€ Quantum fluctuations in the photon flux reaching the photodetectors

e Laser noise
€4 Amplitude noise induces variations in the measured power on the photodetector
€ Frequency/phase noise induces a relative phase variation at the output port
€ Beam pointing noise induces a relative phase variation at the output port
€ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector
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o

(@) Dealing with laser noises

rgo-+

e Interferometer common mode rejection factor

€ Mirror quality, output mode-cleaner, interferometer alignment, interferometer tuning with thermal compensation
systems

e Laser intensity and frequency stabilization

€ Stabilization of the laser frequency using the interferometer cavity as frequency reference
» Quietest reference on Earth
€ Stabilization of laser intensity using a low noise measurement of the power injected into the interferometer

€ Used both at LIGO and Virgo but always a potential offender
» SNR of the laser intensity/frequency measurement can be critical
» Need to reach shot noise

e Sidebands amplitude stabilization
€ Will be implemented in AdV+

e Adopt homodyne detection instead of DC detection
€ Will be implemented in A+
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o

(@) Dealing with laser noises

rgo-+

e Signal detection: DC-readout vs Homodyne

Heterodyne Homodyne DC-readout
MY

Schnupp
asymmetry

Ve

dark fringe

Laser

Laser EOM

Carrier == <asssssssas
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(. Dealing with laser/sensing noises @

e Adopt homodyne detection instead of DC detection
@ Allow to lock interferometer exactly on the dark fringe e

e Other motivations

€ Eliminate the coupling to SRC length noise that arises from
the AS beam light power.

€ Reduce back-scatter in the AS port from the LO power.
€ Eliminate the RF offset in the AS port WFS.
€ Ability to tune the homodyne phase.

€ Ability to subtract the PD photocurrents directly to help with
detector SNR.

€ Eliminate the off-resonant, radiation pressure coupling in the
arm cavities.

ISAPP, June 16th 2021 34



((@))c-:;; Readout noises

e Shot noise
€ Quantum fluctuations in the photon flux reaching the photodetectors

e Laser noise

€4 Amplitude noise induces variations in the measured power on the photodetector

€ Frequency/phase noise induces a relative phase variation at the output port

€ Beam pointing noise induces a relative phase variation at the output port

€ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

e Residual gas noise
€ Light phase noise due index of refraction fluctuations
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(. Residual gas noise

e Vacuum needed to protect the interferometer from environmental noise

e Largest vacuum volume in the world

e Residual gas induced phase noise on the light
€ Very low pressure required (~10-° mbar)
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&

(. Residual gas noise

e Efforts ongoing at LIGO and Virgo to improve vacuum

@ Leak repairs
@ Better sealing
€ More pumps

Residual gas noise ASD

— — Present, O3
— AdV goal

04 baseline: 130 Mpc m . .
—— 05 low: 280 Mpc Gas specie Partial Noise

Pressure

[mbar] [E-25 Hz-05]

—

<
N
L¥]

g Total 1E-8 26
e H- 2E-9 3
g H.O 3E-9 11
s N, + O; + others 5E-9 19
1024 Hydrocatbon 100 uma 1E-12 3
Hydrocarbon 300 uma 1E-12 10

PFPE lubricant 1E-12 10

10-2% '
10t 102

Frequency [Hz]
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((@))a:;; Readout noises

e Shot noise
€ Quantum fluctuations in the photon flux reaching the photodetectors

e Laser noise
€4 Amplitude noise induces variations in the measured power on the photodetector
€ Frequency/phase noise induces a relative phase variation at the output port
€ Beam pointing noise induces a relative phase variation at the output port
€ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

e Residual gas noise
€ Light phase noise due index of refraction fluctuations

e Environmental noise/Scattered light noise
€ Scattered light hits against a vibrating surface and recombines with the main beams at the output port
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(= Reduction of scattered light

rgo-+

e Baffles to avoid that scattered light reach vibrating surfaces
e Identification and dump of spurious beams
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rgo+

(= Monitoring of scattered light @

e Baffles equipped with light sensors to measure scattered light around mirrors
€ First item installed in the Virgo input mode-cleaner this year
€ Future: installation around the mirrors in the arm cavities

0.15;

0.1;

0.05 |/

Y (m)
o

-0.05 | (.

Py 3

-0.15

ISAPP, June 16th 2021 40



((@))a:;; Readout noises

e Shot noise
€ Quantum fluctuations in the photon flux reaching the photodetectors

e Laser noise
€4 Amplitude noise induces variations in the measured power on the photodetector
€ Frequency/phase noise induces a relative phase variation at the output port
€ Beam pointing noise induces a relative phase variation at the output port
€ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

e Residual gas noise
€ Light phase noise due index of refraction fluctuations

e Environmental noise/Scattered light noise
€ Scattered light hits against a vibrating surface and recombines with the main beams at the output port

e Electronic noise
€ Voltage/current noise in the photodetectors readout chain
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o

(@) Displacement noises

rgo-+

e Noises due to a real displacement of the mirrors
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(o) Displacement noises

e Radiation pressure noise
€ Variation of the laser power impinging on the mirrors

e Thermal noise
€ Mirror surface motion due to mirror/suspension temperature
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(o)™ Thermal noise

irgo—+

e Thermal vibrations of the mirrors and of their suspensions
®E=12kT

€ But it is possible to concentrate thermal energy at the resonance
» Use systems with high mechanical quality factor

I
1
07 T
I
I
e
0|
: | —~—
I
E 1
] I
? 10 il 1
3  frequency
I ‘ |
10-% : Increasing
| quality factor
I
I
EETEE 00 e o ’
frequency (Hz)

ISAPP, June 16th 2021 44






(@)= Monolithic suspensions

irgo+

e Mirrors suspended with fused silica fibers

& Fibers bonded to the mirror sides
€ Very high mechanical quality factors
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irgo+

(= Mirror thermal noise @

e LIGO/Virgo mirrors made of:
€ 40 kg fused silica cylinders
€ Multi layers coatings to provide high reflectivity at the laser wavelength

e Coatings are the main contributors to the mirror thermal noise

Interférences constructives

& A2 A/2 3A/2 3)/2 5)\/2 BA/2 @%
air

A4
A4
A4
A/4
A/4
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(@)= Coating thermal noise

irgo—+

Interférences constructives
o A/2 A2 3A/2 3)0/2 BA/2 BA/2

e LIGO/Virgo coatings based on multilayer made of:
€ Ti:Ta205 for the high index material
€ SiO2 for the low index material
e Finding: mechanical losses dominated by
Ti:Ta205

e R&D ongoing to find high index material with
lower losses

e Several materials studied for AdV+and A+ T T T [ o]
& Best candidates Lo

——allGOsldata | |
alLlGO s2 data

» Silicon Nitride E = = Ta,0,/Si0, fit |
. . . . $ = = iLIGO fit
» Titania Germania mixture N = ST alIGO s1 fi
E 10 s = = gLIGO s2 fit
a
W) 1.4
<

10’ 102 10° 10*
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(. LMA: the Virgo facility for Mirrors @

e The perfect coating
€ Low mechanical losses
€ Low scattering (< 10 ppm)
€ Low absorption (<1 ppm)
€ Small surface figure error (< 1 nm)

-
iy

e Laboratoire des Materiaux Avances,
Lyon, France

€ Facility developed for the realization of
the Virgo mirrors
» Coating machines based on lon Beam Sputtering
» Mirror metrology equipment
» Large class 1 clean room

e Also used for LIGO and KAGRA
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(@)=

Next steps

Choose the most promising solution

& Ti02:GeO2/ SiO2
€ SiN/ SiO2

Start its engineering at LMA

Goal: have new coatings for the
A+/AdV+ detectors to be used in O5

NB. Mirrors production it's a very
long process

& At least 3 years between glass production for
the substrates and mirror installation

Coating thermal noise reduction
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(@)=

Not only coating losses reduction

Increase beam size on end mirrors
€ Fromto 6 cmto 10 cm

Why end mirrors?
€ End mirror have larger reflectivity
€ Thicker coatings
€ Larger coating thermal noise

Challenge
€ Cavities has larger g-factor
@ Less stable
€ More difficult to keep aligned

Thermal noise reduction in AdV+

Input
Mode
Cleaner

T

Faraday

o

WE

130W Isolator H_

Laser
PRM POP

SRM|

Output
Mode Cleaner

Photodiode (5]

g-{F==-1]

Filtering cavity

Squeezed
I71] light source
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]

(@ Thermal noise reduction in AdV+ @

e Need to realize larger mirrors

€ 55 cm diameter, 20 cm thickness
€ 100 kg in mass

e Polishing requirements as tight as those for AdV and AdL but on larger surfaces

€ 0.5 nm RMS on 30 cm diameter

&€ Need to realize radius of curvature with <10 m
precision (over ~1.5 km)
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(@h-. Thermal noise reduction in AdV+ @

e Need to suspend 100 kg mirror with fused silica fibers
e Need to control finely the mirror position once suspended
e New payload for 100 kg mirror being developed for AdV+
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(o) Displacement noises

e Radiation pressure noise
€ Variation of the laser power impinging on the mirrors

e Thermal noise
€ Mirror surface motion due to mirror/suspension temperature

e Seismic noise
€ Seismic vibration propagating to the mirror
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((@)9@:;; Seismic noise

e Natural ground vibrations much larger than GW signals

e Main solutions

€ Advanced seismic isolation systems (low frequency cut-off)
€ Multi-pendulum with vertical low frequency springs

~10m

Displacement [m/rHz]

I T T T I | I I

[ T T T L T [ TTTT [
¥ 10° 1p’ 10°

10'13 Frequency [Hz]

10°

Photon shot noise level
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((@))a:;a Seismic noise

e Both LIGO and Virgo using a combination of active and passive seismic isolation

€ More passive isolation at Virgo
€ More active isolation at LIGO

e Both sufficient to reach the AdV+ and A+ seismic isolation requirements

€ Residual seismic noise smaller than Newtonian noise
€ No upgrades needed to reach sensitivity goals

e Upgrade of Virgo seismic isolation for end mirror required to suspend the heavier
MIrrors
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(o) Displacement noises

e Radiation pressure noise
€ Variation of the laser power impinging on the mirrors

e Thermal noise
€ Mirror surface motion due to mirror/suspension temperature

e Seismic noise
€ Seismic vibration propagating to the mirror

e Newtonian noise
€ Seismic vibration varying local gravity
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((@)}c,:;; Newtonian noise

e Local gravity variation due to masses motion around the mirror.

€ Originated from seismic noise (or air masses motion)

€ Main solutions:
» Go underground
- Less seismic noise
» Measure seismic noise precisely and subtract it from the ITF signal

ISAPP, June 16th 2021
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(o)™ Newtonian noise cancellation

irgo—+

e AdV+ plan
e Deploy arrays of seismic sensors at each building
e Measure seismic waves and subtract Newtonian noise from the data
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(= Interferometer control system

rgo-+

B8

e Keep interferometer at the working point
€ Keep all mirrors aligned
€ Keep optical cavities at resonance
€ Keep interference locked to the “dark fringe”

WE

Wi

NE
B7

BS NI

— 3

e Control accuracy required d
€ Less than nano-radiants
€ Less than pico-meters

B4

Bls

e Control system architecture
€ Detectors to sense relevant optical lengths/alignments
€ Coil-magnets actuators to act on mirror positions
€ Digital control system to act in real time

ISAPP, June 16th 2021 59



(o) Displacement noises

e Radiation pressure noise
€ Variation of the laser power impinging on the mirrors

e Thermal noise
€ Mirror surface motion due to mirror/suspension temperature

e Seismic noise
€ Seismic vibration propagating to the mirror

e Newtonian noise
€ Seismic vibration varying local gravity

e Magnetic/Electric noise
€ Varying EM fields acting via mirror magnets or mirror residual charge

e Actuation noise
€ Voltage/Current noise in the coils-magnet actuators
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(. AdV+ best sensitivity (O5)

Strain [1/+vHz]
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(@) A+ best sensitivity (O5)

rgo-+
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(@

e No established plans yet

e Infrastructure limitations
€ Building size
€ Arm length
€ Vacuum system

e Path toward 3G?

After O5?

ISAPP, June 16th 2021
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(@

e LIGO/Virgo optical configuration

e Main keywords
€ Cryogenic (123 K)
@ Silicon test masses
@ laser wavelength 2 um

Voyager

| [

4km

FP cavity cooled down to 123K
arm MW

L ITMY E ]:|

silicon _
. —
compensation plates

152W 3.1kW.

PSL
A=2000 nm PRM

cryogenic

shields \

BS

ITMX
SRM

d LB O

OFI :
7

oMc2

Balanced
OMC1 homodyne
detection

x4 200 kg silicon test mass
with amorphous silicon coating

ETMX
‘— 4km FP cavity arm —/

SQZ FCFI Filter caviti{]

ISAPP, June 16th 2021

64




((@)% Voyager

e Why 123 K?
e Substrate thermo-elastic noise 07

me \/oyager: Substrate Brownian
Voyager: Substrate Thermo-Elastic
mem \/oyager: Substrate Thermo-Refractive
s \/oyager Total
0.6 - 10723 I I
Coeff. of Thermal Expansion
04l Substrate Thermoelastic Noise @ 100Hz 2
“7| |==== Quantum Noise (@ 100Hz (for reference) 107
g 10 |2
N
2 0| = =
LE g =
© o2l o™ 2 g
N
0.4} 10721
0 =
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Temperature [K]
10—26
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(@)= Voyager

e Suspension and cryogenic

€ Monolithic silicon suspension Penultimate Mass (123K)

€ Radiative cooling (efficient at 123 K)

Blade Spring (123K)

Silicon Ribbon (123K)

—

Test Mass (123 K)

/

Cryo Shield
(partially shown)

ISAPP, June 16th 2021
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(@)= Voyager

e Mirror coating
€ Amorphous silicon as high index material

. 1072 e i
€ But low absorption not demonstrated yet oyager: Coating Brownian
Vovager: Coating Thermo-Optic
s 3 [ ]GO: Coating Brownian
== == o LJGO: Coating Thermo-Optic
Parameter Detector Material Loss-angle Refractive Index
(p) n
Low index  aLIGO (300K)  SiOy 4.0x107° 1.45 -~
High index aLIGO (300K)  TazOs; 2.3x1074 2.07 S 102} T -
R -~
Lowindex Voyager (123K)  SiO 1.0x 1074 1.436 = = S
High index Voyager (123K)  @-Si = 1.0 x 1075[44] 3.5 E I RS
& —
(NN
TABLE 2: Summary of the coating material parameters. Note that, due to the peculiarities of glass, N ~
the loss-angle for the SiOg increases at cryogenic temperatures[45]. N~ ~
~y
oy
~ "'lh
1072}
10! 10° 10°

Frequency [Hz
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(@)= Voyager

e Laser wavelength
@ Preferred is 2 um
€ Main driver: optical absorption

Consideration Wavelength

1550 nm 1900 nm 2000 nm 2128 nm
Photodiode Q.E. > 99% ~ 87%. Promising trajectory (Section 5.4).
Coating thermal noise Low ~14% larger
Optical scatter loss 66% larger Low
Residual gas noise low HyO some HoO low HyO
Coating absorption _ Medium
Si substrate absorption Increases as A2 but not dominant effect
S109 substrate absorption <1 ppm/em 20 ppm/cm = 40 ppm/cm _
Angular instability Less stable More stable arm cavity
Parametric instability Very little change with wavelength
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(@h-. Voyager oS

e Potential sensitivity

€ Real improvement compared to room temperature detectors. Nice alternative path toward cryogenic detector
€ A lot of R&D to be done. Extended downtime probable.

e Quantum Vacuum: P, = 152W; (i, = 10dB

mm Seismic: al. 1GO/10 101

10_22 u === Newtonian Gravity: 10x subtraction Voyager
s Suspension Thermal: 123 K Si blades & ribbons = aLIGO
s (Coating Brownian: a-Si:5105 depar = 5.5e-5 m— A

== == Substrate Thermo-Refractive

== = Substrate Brownian: 123 K Si mirror (200kg)
alLIGO O3 == == Residual Gas: 3nTorr of Hs
10—23 L ! Total 100t

Strain [1/v/Hz|
Redshift

10—24 L

100 10! 10 103
Total Mass (M)

10—25

Frequency [Hz]
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(. Conclusions @

e Still a lot to do with the LIGO/Virgo infrastructure
& AdV+/A+
€ Post O5 plan to be established

e As 3G will approach they will progressively become nice places to test new solutions

for 3G upgrades
€ As GEO was for AdL and AdV
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