

Virgo/LIGO upgrades. Plans & challenges

Raffaele Flaminio

CNRS/LAPP, Annecy, France & NAOJ, Tokyo, Japan

Worldwide GW network

Perspectives (2020's)

- Virgo and LIGO being upgraded (Advanced Virgo+ and A+)
- Goal: reach a BNS range of 200-300 Mpc in the mid-2020

• LIGO-Virgo-KAGRA (LVK) working in a network as a single detector

Advanced Virgo+: content & schedul

• Two phases project

- Phase I (before O4 run/2022)
 - » Mainly an upgrade to reduce quantum noise: no mirrors change
 - » Reduction of technical noises
 - » Preparation of Phase II
- ◆ Phase II (before O5 run/2025)
 - » More invasive upgrade to reduce thermal noise: mirrors change

	2019	2020	2021	2022	2023	2024	2025	2026
03	03							
AdV+ Phase I	Construction and Preparation Phase II							
		Instal	lation					
			Commissioni	ng				
O4				C	04			
۸ م/ ۱	Construction							
					Instal	lation		
Phase II						Commission	ing	
05								05

More details on detection principle

• "Free falling masses"

anced

Mirrors suspended as pendulum

Orders of magnitude

Competing noises

- Broadly speaking two categories
- Readout noises
 - Produce a variation in the power measured by the photo-detectors without a mirror displacement
- Displacement noises
 - Produce a real displacement of the mirrors

Measurement of flux of photons reaching the photodetector

Shot noise

• Phase signal
$$\Delta \phi_s = \frac{4\pi}{\lambda} h L$$
 λ = laser wavelength

Heisenberg principle

Signal > Noise

ble
$$\Delta \phi_n > \frac{1}{\sqrt{N}}$$
 N = number of
photons used
 $h > \frac{1}{L} \frac{\lambda}{4\pi} = \frac{2\hbar\omega}{P}$ P = laser pow

1

laser power

- Sensitivity improve when:
 - ◆ Arm length L ↑
 - ◆ Laser power P ↑

visualization of shot noise

Optical amplification

• Optical signal amplification

- ♦ Fabry-Perot cavities in the arms
 - » Increase equivalent arm length
- Power recycling
 - » Increase effective laser power
- Signal recycling (not shown)
 - » Enlarge detector bandwidth

Quantum description of shot noise

• Laser field in quantum optics

Quantum description of shot noise

- Signal detection requires to measure electric field at the interferometer output
- Vacuum fluctuations enter from the input port
 - ◆ No effect since the ITF is on the dark fringe
- Vacuum fluctuations enter also from the output port !
 - Phase fluctuations limit the phase measurement
 - » Shot noise
 - » Smaller effect for larger laser power
 - Amplitude fluctuations create radiation pressure fluctuations on the mirrors
 - » Radiation pressure noise
 - » Larger effect for larger laser power

Quantum noise

- Quantum noise = Shot noise + Radiation pressure
- Heisenberg principle
 - ♦ If shot noise ↓, then radiation pressure ↑ (and viceversa)
- Standard quantum limit
 - Decreases as the mirror mass is increased
- Is it possible to circumvent the quantum limit?

Squeezed vacuum state

Use of squeezed vacuum state

- Inject phase squeezed vacuum from the output port
- Squeezed vacuum
 - Decrease shot noise
 - ♦ Increase radiation pressure noise
 - Equivalent to more power
 - » Without the disadvantage of thermal deformation
 - ◆ Limit:
 - » amount of feasible squeezing
 - » optical losses
- Used both at LIGO and Virgo to reduce the shot noise

LIGO configuration during O3

• Dual recycled Fabry-Perot interferometer

- Stable recycling cavities
- Laser solid state amplifier
 - ♦ Able to deliver 70 W
 - ♦ 40-50 W into the interferometer
- 33 m input mode-cleaner
- Composite output mode-cleaner
- In-vacuum squeezed vacuum source

Virgo sensitivity during O3

- Main contributions
 - Quantum noise
 - ♦ Thermal noise
 - ♦ "Flat noise", not understood
 - ♦ Control noise
 - » Larger at lower frequencies
 - » Around 100 Hz mostly due to sidebands amplitude noise

LIGO sensitivity during O3

- Noise budget (LLO)
- Main contributions
 - Quantum noise
 - ♦ Mirror thermal noise
 - Control noise
 - » Length control
 - » Alignment control
 - ◆ Residual gas noise (at LLO)

Use of squeezed vacuum state

- Inject phase squeezed vacuum from the output port
- Squeezed vacuum
 - Decrease shot noise
 - ♦ Increase radiation pressure noise
 - Equivalent to more power
 - Limit:
 - » amount of feasible squeezing
 - » optical losses
- Used both at LIGO and Virgo to reduce the shot noise
- Is it possible to reduce both shot noise and radiation pressure noise?

Use of squeezed vacuum state

• YES, inject frequency dependent squeezed vacuum from the output port

- Phase squeezing at high frequency
- Amplitude squeezing at low frequency
- Decrease both shot noise and radiation pressure noise

• How?

- Generate squeezed vacuum state
- ♦ Reflect on an high finesse optical cavity
- Done!
- ◆ Limitation: optical losses in the cavity
- Currently being built at Virgo and at LIGO

Frequency dependent squeezing

ISAPP, June 16th 2021

• Goal: use frequency dependent squeezing in AdV+ Phase I

• Similar plan at LIGO

anced Virao +

ISAPP, June 16th 2021

Virgo-LIGO sensitivity during O3

- One remarkable difference
- Detector bandwidth
- Due to use of signal recycling in LIGO

Signal recycling in AdV+

anced ′irgo +

Laser power increase in AdV+

ISAPP, June 16th 2021

Readout noises

• Shot noise

Quantum fluctuations in the photon flux reaching the photodetectors

• Laser noise

- ◆ Amplitude noise induces variations in the measured power on the photodetector
- ◆ Frequency/phase noise induces a relative phase variation at the output port
- Beam pointing noise induces a relative phase variation at the output port
- ◆ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

Dealing with laser noises

- Interferometer common mode rejection factor
 - Mirror quality, output mode-cleaner, interferometer alignment, interferometer tuning with thermal compensation systems
- Laser intensity and frequency stabilization
 - ◆ Stabilization of the laser frequency using the interferometer cavity as frequency reference
 - » Quietest reference on Earth
 - Stabilization of laser intensity using a low noise measurement of the power injected into the interferometer
 - Used both at LIGO and Virgo but always a potential offender
 - » SNR of the laser intensity/frequency measurement can be critical
 - » Need to reach shot noise
- Sidebands amplitude stabilization
 - ♦ Will be implemented in AdV+
- Adopt homodyne detection instead of DC detection
 - ♦ Will be implemented in A+

• Signal detection: DC-readout vs Homodyne

• Adopt homodyne detection instead of DC detection

- ◆ Allow to lock interferometer exactly on the dark fringe
- Other motivations
 - Eliminate the coupling to SRC length noise that arises from the AS beam light power.
 - ◆ Reduce back-scatter in the AS port from the LO power.
 - Eliminate the RF offset in the AS port WFS.
 - ♦ Ability to tune the homodyne phase.
 - Ability to subtract the PD photocurrents directly to help with detector SNR.
 - Eliminate the off-resonant, radiation pressure coupling in the arm cavities.

Dealing with laser/sensing noises

Readout noises

• Shot noise

Quantum fluctuations in the photon flux reaching the photodetectors

• Laser noise

- ◆ Amplitude noise induces variations in the measured power on the photodetector
- Frequency/phase noise induces a relative phase variation at the output port
- Beam pointing noise induces a relative phase variation at the output port
- ◆ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

• Residual gas noise

◆ Light phase noise due index of refraction fluctuations

Residual gas noise

- Vacuum needed to protect the interferometer from environmental noise
- Largest vacuum volume in the world
- Residual gas induced phase noise on the light
 - ◆ Very low pressure required (~10⁻⁹ mbar)

Residual gas noise

• Efforts ongoing at LIGO and Virgo to improve vacuum

- ◆ Leak repairs
- ♦ Better sealing
- ◆ More pumps

Partial Pressure	Noise	
[mbar]	[E-25 Hz ^{-0.5}]	
1E-8	26	
2E-9	3	
3E-9	11	
5E-9	19	
1E-12	3	
1E-12	10	
1E-12	10	
	Partial Pressure [mbar] 1E-8 2E-9 3E-9 5E-9 1E-12 1E-12 1E-12 1E-12	

Readout noises

• Shot noise

Quantum fluctuations in the photon flux reaching the photodetectors

• Laser noise

- ◆ Amplitude noise induces variations in the measured power on the photodetector
- Frequency/phase noise induces a relative phase variation at the output port
- Beam pointing noise induces a relative phase variation at the output port
- ◆ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

• Residual gas noise

- ◆ Light phase noise due index of refraction fluctuations
- Environmental noise/Scattered light noise
 - Scattered light hits against a vibrating surface and recombines with the main beams at the output port

Reduction of scattered light

- Baffles to avoid that scattered light reach vibrating surfaces
- Identification and dump of spurious beams

Monitoring of scattered light

- Baffles equipped with light sensors to measure scattered light around mirrors
 - ◆ First item installed in the Virgo input mode-cleaner this year
 - ◆ Future: installation around the mirrors in the arm cavities

Readout noises

• Shot noise

Quantum fluctuations in the photon flux reaching the photodetectors

• Laser noise

- ◆ Amplitude noise induces variations in the measured power on the photodetector
- Frequency/phase noise induces a relative phase variation at the output port
- Beam pointing noise induces a relative phase variation at the output port
- ◆ Laser sidebands amplitude noise induces a variation in the measured power on the photodetector

• Residual gas noise

- ◆ Light phase noise due index of refraction fluctuations
- Environmental noise/Scattered light noise
 - Scattered light hits against a vibrating surface and recombines with the main beams at the output port
- Electronic noise
 - Voltage/current noise in the photodetectors readout chain

Displacement noises

• Noises due to a real displacement of the mirrors

Displacement noises

• Radiation pressure noise

◆ Variation of the laser power impinging on the mirrors

• Thermal noise

◆ Mirror surface motion due to mirror/suspension temperature

Thermal noise

- Thermal vibrations of the mirrors and of their suspensions
 - ♦ E =1/2 k T
 - ♦ But it is possible to concentrate thermal energy at the resonance
 - » Use systems with high mechanical quality factor

Monolithic suspensions

• Mirrors suspended with fused silica fibers

- Fibers bonded to the mirror sides
- Very high mechanical quality factors

Mirror thermal noise

• LIGO/Virgo mirrors made of:

- ♦ 40 kg fused silica cylinders
- ◆ Multi layers coatings to provide high reflectivity at the laser wavelength
- Coatings are the main contributors to the mirror thermal noise

Coating thermal noise

• LIGO/Virgo coatings based on multilayer made of:

- ◆ Ti:Ta2O5 for the high index material
- \blacklozenge SiO2 for the low index material
- Finding: mechanical losses dominated by Ti:Ta2O5
- R&D ongoing to find high index material with lower losses
- Several materials studied for AdV+ and A+
 - Best candidates
 - » Silicon Nitride
 - » Titania Germania mixture

LMA: the Virgo facility for Mirrors

• The perfect coating

- Low mechanical losses
- Low scattering (< 10 ppm)</p>
- ◆ Low absorption (<1 ppm)
- Small surface figure error (< 1 nm)</p>
- Laboratoire des Materiaux Avancés, Lyon, France
 - Facility developed for the realization of the Virgo mirrors
 - » Coating machines based on Ion Beam Sputtering
 - » Mirror metrology equipment
 - » Large class 1 clean room

• Also used for LIGO and KAGRA

Coating thermal noise reduction

• Next steps

- Choose the most promising solution
 - ♦ TiO2:GeO2 / SiO2
 - ♦ SiN / SiO2
- Start its engineering at LMA
- Goal: have new coatings for the A+/AdV+ detectors to be used in O5
- NB. Mirrors production it's a very long process
 - At least 3 years between glass production for the substrates and mirror installation

Thermal noise reduction in AdV+

- Increase beam size on end mirrors
 - ♦ From to 6 cm to 10 cm
- Why end mirrors?
 - End mirror have larger reflectivity
 - Thicker coatings
 - ◆ Larger coating thermal noise
- Challenge
 - ♦ Cavities has larger g-factor
 - ♦ Less stable
 - ♦ More difficult to keep aligned

Thermal noise reduction in AdV+

- Need to realize larger mirrors
 - ♦ 55 cm diameter, 20 cm thickness
 - ♦ 100 kg in mass
- Polishing requirements as tight as those for AdV and AdL but on larger surfaces
 - ♦ 0.5 nm RMS on 30 cm diameter
 - Need to realize radius of curvature with <10 m precision (over ~1.5 km)

- Need to suspend 100 kg mirror with fused silica fibers
- Need to control finely the mirror position once suspended
- New payload for 100 kg mirror being developed for AdV+

Displacement noises

• Radiation pressure noise

◆ Variation of the laser power impinging on the mirrors

• Thermal noise

◆ Mirror surface motion due to mirror/suspension temperature

• Seismic noise

Seismic vibration propagating to the mirror

Seismic noise

- Natural ground vibrations much larger than GW signals
- Main solutions
 - Advanced seismic isolation systems (low frequency cut-off)
 - Multi-pendulum with vertical low frequency springs

Seismic noise

- Both LIGO and Virgo using a combination of active and passive seismic isolation
 - ◆ More passive isolation at Virgo
 - More active isolation at LIGO
- Both sufficient to reach the AdV+ and A+ seismic isolation requirements
 - ♦ Residual seismic noise smaller than Newtonian noise
 - ♦ No upgrades needed to reach sensitivity goals
- Upgrade of Virgo seismic isolation for end mirror required to suspend the heavier mirrors

Displacement noises

• Radiation pressure noise

◆ Variation of the laser power impinging on the mirrors

• Thermal noise

◆ Mirror surface motion due to mirror/suspension temperature

• Seismic noise

Seismic vibration propagating to the mirror

• Newtonian noise

Seismic vibration varying local gravity

Newtonian noise

• Local gravity variation due to masses motion around the mirror.

- Originated from seismic noise (or air masses motion)
- Main solutions:
 - » Go underground
 - Less seismic noise
 - » Measure seismic noise precisely and subtract it from the ITF signal

- AdV+ plan
- Deploy arrays of seismic sensors at each building
- Measure seismic waves and subtract Newtonian noise from the data

Interferometer control system

• Keep interferometer at the working point

- ♦ Keep all mirrors aligned
- ♦ Keep optical cavities at resonance
- ◆ Keep interference locked to the "dark fringe"

• Control accuracy required

- Less than nano-radiants
- Less than pico-meters

Control system architecture

- Detectors to sense relevant optical lengths/alignments
- Coil-magnets actuators to act on mirror positions
- Digital control system to act in real time

Displacement noises

• Radiation pressure noise

Variation of the laser power impinging on the mirrors

• Thermal noise

Mirror surface motion due to mirror/suspension temperature

• Seismic noise

Seismic vibration propagating to the mirror

Newtonian noise

Seismic vibration varying local gravity

Magnetic/Electric noise

• Varying EM fields acting via mirror magnets or mirror residual charge

Actuation noise

Voltage/Current noise in the coils-magnet actuators

AdV+ best sensitivity (O5)

A+ best sensitivity (O5)

After O5?

- No established plans yet
- Infrastructure limitations
 - ♦ Building size
 - ◆ Arm length
 - ♦ Vacuum system
- Path toward 3G?

Voyager

- Why 123 K?
- Substrate thermo-elastic noise 10^{-23} Voyager: Substrate Brownian Voyager: Substrate Thermo-Elastic • Voyager: Substrate Thermo-Refractive Voyager Total 10^{-23} 0.6 Coeff. of Thermal Expansion Substrate Thermoelastic Noise @ 100Hz ---- Quantum Noise @ 100Hz (for reference) 10^{-24} 0.4 10⁻²⁴ [_{2/I²}H/I] ¹⁰⁻²⁵ ¹⁰ Strain $[1/\sqrt{\text{Hz}}]$ 0. CTE [ppm/K] 0.0 -0.2 10^{-25} -0.4¹10⁻²⁶ -0.6[└] 90 100 110 120 130 140 Temperature [K] 10^{-26} 10^{2} 10^{3} 10^{1} Frequency [Hz]

• Suspension and cryogenic

- Monolithic silicon suspension
- ♦ Radiative cooling (efficient at 123 K)

• Mirror coating

- Amorphous silicon as high index material
- ◆ But low absorption not demonstrated yet

Parameter	Detector	Material	Loss-angle	Refractive Index
			(ϕ)	n
Low index High index	aLIGO (300 K) aLIGO (300 K)	${ m SiO_2}\ { m Ta_2O_5}$	$4.0 imes 10^{-5}$ $2.3 imes 10^{-4}$	1.45 2.07
Low index High index	Voyager (123 K) Voyager (123 K)	${{ m SiO}_2}\ lpha - { m Si}$	$\begin{array}{l} 1.0 \times 10^{-4} \\ \leq 1.0 \times 10^{-5} [44] \end{array}$	1.436 3.5

TABLE 2: Summary of the coating material parameters. Note that, due to the peculiarities of glass,
the loss-angle for the SiO_2 increases at cryogenic temperatures[45].

• Laser wavelength

 \blacklozenge Preferred is 2 μ m

_

♦ Main driver: optical absorption

Consideration	Wavelength					
	$1550\mathrm{nm}$	1900 nm	$2000\mathrm{nm}$	$2128\mathrm{nm}$		
Photodiode Q.E.	>99%	$\approx 87\%$. Promising trajectory (Section 5.4).				
Coating thermal noise	Low	≈14% larger				
Optical scatter loss	66% larger	Low				
Residual gas noise	$\rm low~H_2O$	some H ₂ O low H ₂ O				
Coating absorption	High	Medium				
Si substrate absorption	Increases as λ^2 but not dominant effect					
SiO_2 substrate absorption	<1 ppm/cm	20 ppm/cm	40 ppm/cm	120 ppm/cm		
Angular instability	Less stable	More stable arm cavity				
Parametric instability	Very little change with wavelength					

• Potential sensitivity

- Real improvement compared to room temperature detectors. Nice alternative path toward cryogenic detector
- ♦ A lot of R&D to be done. Extended downtime probable.

Conclusions

- Still a lot to do with the LIGO/Virgo infrastructure
 - ♦ AdV+/A+
 - Post O5 plan to be established
- As 3G will approach they will progressively become nice places to test new solutions for 3G upgrades
 - \blacklozenge As GEO was for AdL and AdV