

Cosmology with gravitational waves

Walter Del Pozzo University of Pisa

- On large (Gpc) scales, the Universe is homogeneous and isotropic
- Friedmann-Robertson-Walker-LeMaitre (FRWL) metric $ds^{2} = -c^{2}dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right]$
- a(t) is the scale factor
- k = -1,0,1 for an open, flat, closed universe
- (t, r, θ, ϕ) are the *comoving* coordinates

A review of FRWL kinematic

- Source at co-moving distance r emitting at t_{emis}
- Considering a second pulse emitted at $t_{emis} + \Delta t_{emis}$, leads to $\Delta t_{obs} = \frac{a(t_{obs})}{a(t_{omis})} \Delta t_{emis}$
- The cosmological redshift z is or

A review of FRWL kinematic

• Signal detected at t_{obs} . From $ds^2 = 0$: $\int_{t_{outs}}^{t_{obs}} \frac{cdt}{a(t)} = \int_{0}^{t} \frac{dr}{\sqrt{1 - kr^2}}$

defined as
$$1 + z = \frac{a(t_{obs})}{a(t_{emis})}$$

Cosmological time dilation

to the time of the source

$$dt_{obs} = (1+z)dt_{emis}$$

• So, one would measure a frequency $f_{obs} = \frac{f_{emis}}{1+z}$

accounts for the time dilation measured by the observer compared

Consider

• flux F (energy per unit time per unit area) at the observer

• absolute luminosity $L = \frac{dE_s}{dt_s}$ in the source proper frame

• The luminosity distance d_L is defined via *F* =

$$= \frac{1}{4\pi d_L^2}$$

Luminosity distance

• From $\frac{dE_o}{dt_o} = \frac{1}{(1+z)^2} \frac{dE_s}{dt_s}$ and the fact that in a FRWL universe the area of a sphere $A = 4\pi a(t)^2 r^2$ $F = \frac{L}{4\pi a^2(t_0)r^2(1+z)^2}$

- Hence $d_L = (1 + z)a(t_o)r$
- $a(t_o)$

• Taylor expanding $\frac{a(t)}{a(t_o)} \simeq 1 + H_0(t - t_o) + \dots$ one obtains Hubble's Law $H_0 d_L \simeq cz$ $H_0 = \frac{\dot{a}(t_o)}{a(t_o)}$

 In general CZ.

$$d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

whole expansion history of the Universe

Luminosity distance

The relation between luminosity distance and redshift encodes the

- Distance vs redshift
- The inverse of the slope is the Hubble constant
 - Rate of expansion of the Universe

$$D \simeq \frac{v}{H_0} = \frac{cz}{H_0} \quad z << 1$$

Hubble diagram

Propagation of GW in a FRWL universe

- Propagation of GWs in a FRWL universe is particularly interesting
- BBH systems have a unique time scale associated with them $\tau_s = \frac{G\mathcal{M}_s}{c^3}$
- From the cosmological time dilation $\tau_o = (1 + z)\tau_s$, so we would detect a system with a chirp mass $\mathcal{M}_{o} = (1 + z)\mathcal{M}$
- Moreover, the amplitude of the GW will scale as d_I^{-1} (see Maggiore, Vol. 1, Sec. 4.1.4 for the full derivation)

Cosmography with GW

0.5

-0.5

h(t)

 GW are "self-calibrating" sources (Schutz 1986)

$$h \sim D_L^{-1}$$

- Direct measurement of luminosity distance
- "Standard sirens"
- In general, no redshift from GWs (Krolak & Schutz 1987)

 $m_{obs} = m_{src}(1+z)$

- Spectroscopic redshift
- Distance requires:
 - identification of "standard candles"
 - cross-calibration of various candles
 - "Iterate and hope it converges" — S. N. Shore
- The "cosmic distance scale ladder"

Classical determination of Hubble constant

- GW cosmology is enabled by measuring the redshift:
 - Nissanke et al. 2013, Del Pozzo et al. 2018)

& Gair 2013, Messenger & Read 2012, Del Pozzo et al. 2017)

• with EM counterparts (Dalal et al. 2006, Sathyaprakash et al. 2010, Nissanke et al. 2010, Zhao et al. 2011, Del Pozzo 2012,

without EM counterparts (Chernoff & Finn 1993, Taylor et al. 2012, Taylor

Redshift from a counterpart

- the redshift:
 - host galaxy identification (e.g. NGC 4993 & GW170817)
- The redshift information is (almost) certain
 - peculiar velocities
 - weak lensing

• In this case one searches for an electromagnetic counterpart to get

Redshift without a counterpart

- Knowledge of some intrinsic property of the system
 - equation of state (EOS) of neutron stars (Messenger & Read 2012)
 - mass function (e.g. Taylor et al. 2012)
- The redshift information is probabilistic
 - posterior distribution for the value of the redshift for each source

Inference of **S2**

- Cosmological model H with cosmological parameters Ω , observation D $p(\Omega \mid DHI) = p(\Omega \mid HI) \frac{p(D \mid \Omega HI)}{p(D \mid HI)}$ $p(D | HI) = \int dx \, p(x | \Omega HI) p(D | x \Omega HI)$
- x is the set of parameters characterising the GW signal $x \equiv (m_1, m_2, d_I, z, \iota, \alpha, \delta, \vec{s}_1, \vec{s}_2, ...)$
- In the simplest case, only d_I , z are relevant

Distance-redshift relation

- Given H, d_L , z are related via the distance-redshift relation
- FRWL:

$$d_{L}(\Omega, z) = \frac{c(1+z)}{H_{0}} \int_{0}^{z} \frac{dz'}{E(z')}$$

$$E(z') = \sqrt{\Omega_m (1 + z')^3 + \Omega_\Lambda g(z', w_0, w_a)}$$

$$g(z', w_0, w_a) = (1 + z')^{3(1+w_0+w_a)} e^{-3\frac{w_a z'}{1+z'}}$$

• Likelihood

$$p(D \mid \Omega HI) = \int dz \, dd_L \, p(d_L \mid z \, \Omega HI) p(z \mid \Omega HI) p(D \mid d_L z)$$
• $d_L(\Omega, z) \implies p(d_L \mid \Omega z I) = \delta(d_L - d_L(\Omega, z))$

$$p(D \mid \Omega HI) = \int dz \, p(z \mid \Omega HI) p(D \mid d_L(\Omega, z) \, z \, \Omega HI)$$

• The problem is reduced to determining $p(z \mid \Omega HI)$

(ΩHI)

From the GW measurement

• If we have a unique counterpart with a perfect redshift determination

$p(z \mid \Omega HI) = \delta(z - \hat{z})$

• For a Gaussian likelihood, z < 1, and no selection effects

Ideal case

- GW170817:
 - EM transient observed in coincidence with the GW event
 - host galaxy identification: NGC 4993
 - Correction for NGC 4993 peculiar velocity pv wrt its group centroids

 $p(z \mid \Omega HI) \sim \mathcal{N}(\hat{z}; pv)$

• Correction for GW sensitivity, function of H_0 and cos *i*

GW170817

Walter Del Pozzo

GW170817

Walter Del Pozzo

Chen et al, arXiv:1712.06531

Perspectives

- Statistical association (e.g. Schutz 1986)
 - GW localised within some (unknown) galaxy
- Cross correlate with a galaxy catalog
 - Catalog completeness important for z > 0.3
- Not limited to BNS (or NSBH) source classes

No transient counterpart

Del Pozzo et al, arXiv:1801.08009

June 15th 2021, ISAPP school

 If a GW is assumed to be located in a galaxy

$$p(z \mid \Omega HI) \propto \sum_{i} w_i \delta(z - \hat{z}_i)$$

- Including peculiar velocities $p(z | \Omega HI) \propto \sum w_i \mathcal{N}(\hat{z}_i; pv)$
- For a Gaussian likelihood, z < 1, and no selection effects

Statistical association

Single source posteriors

- Each event gives posteriors that track the large scale distribution of galaxies
- Idea exploited to use galaxy clustering as additional information in Mukherjee et al, arXiv:2007.02943

Del Pozzo, arXiv:1108.1317 June 15th 2021, ISAPP school

	HLV			HLVJ			HLVJI		
# events	$\langle h_{2.5\%} angle$	$\langle \overline{h} angle$	$\langle h_{97.5\%} angle$	$\langle h_{2.5\%} angle$	$\langle \overline{h} angle$	$\langle h_{97.5\%} angle$	$\langle h_{2.5\%} angle$	$\langle \overline{h} angle$	$\langle h_{97.5\%} angle$
5	0.644	0.753	0.982	0.664	0.701	0.765	0.663	0.705	0.779
10	0.671	0.714	0.775	0.675	0.699	0.725	0.674	0.698	0.721
15	0.676	0.705	0.754	0.681	0.699	0.716	0.682	0.697	0.712
20	0.679	0.701	0.722	0.684	0.698	0.711	0.684	0.697	0.709
30	0.681	0.698	0.717	0.688	0.699	0.708	0.687	0.697	0.707
40	0.686	0.700	0.714	0.687	0.699	0.707	0.689	0.697	0.704
50	0.686	0.700	0.714	0.687	0.700	0.706	0.689	0.700	0.703

Projections

Del Pozzo, arXiv:1108.1317 June 15th 2021, ISAPP school

- LV Collaboration, arXiv:1908.06060
 - 10 BBH+1BNS
 - Galaxy catalog completeness critical, $d_I(BBH) \sim O(Gpc)$

in catalog

galaxy population

Results from O2

$p(z \mid \Omega HI) = p(z \mid \Omega HGI)p(G \mid \Omega HI) + p(z \mid \Omega H\overline{G}I)p(\overline{G} \mid \Omega HI)$ not in catalog

Corrections depend on the cosmology, the survey completeness and

- Measurement not competitive yet
 - Individual posteriors are largely uninformative
- Catalog incompleteness is dominant

Results from O2 - individual BBHs

- Even a joint posterior is not competitive yet
 - GW170817 dominates the inference

Joint results from O2

Probability of host in catalog

(Dalya+2018), DES Y1 (Drlica-Wagner+2018) and GWENS (Rahman+2019)

Statistical association made assuming a combination of GLADE

- LISA will observe sources across the Universe
- Different sources will probe different redshift ranges
 - sBH: z < 0.1
 - EMRIs: z < 1
 - SMBHs: z < 10

LISA as a cosmological probe

Tamanini et al, arXiv:1601.07112 June 15th 2021, ISAPP school

LISA observations of sBH

- Following GW150914, Sesana realised that many similar systems would be observed by LISA
- Low redshift (<0.1)
- Cross-correlation with Millennium simulation

run	LISA design	$\mathcal{R} [yr^{-1}Gpc^{-3}]$	N _{BHB}	h(68%)	500
A210	N2A2M5L6	12	7	$0.716^{+0.052}_{-0.050}$	400 -
$A2_{50}$	N2A2M5L6	34	22	$0.734^{+0.037}_{-0.033}$	
A290	N2A2M5L6	70 19	39 55	$0.720_{-0.024}$ 0.720 $^{+0.021}$	J 200
A510 A550	N2A5M5L6	34		$0.730_{-0.020}$ $0.728^{+0.013}$	$_L/N$
$A5_{90}$	N2A5M5L6	70	259	$0.720_{-0.012}$ $0.731_{-0.009}^{+0.010}$	П ₂₀₀
					100
0.80	Ť Ţ				0.00
	<i>₹</i> ″^	×″℃ ⊺?° ⊺	S.		1.2
0.75		·····	÷ I	+~ I + ² 29	1.0
IS ⁻¹ MJ	•				Mpc^{-1}
0.70 li		·····	-		cm s
$H_0/1$		L			0/100 /
0.65	_				H
0.00					0.4
	A2 ₁₀ A2 ₅₀	$A2_{90}$ A5	10 A55	50 A5 ₉₀	0

Walter Del Pozzo

H0 from sBH

Cosmography with EMRIs

- EMRIs should be observable up to z < 1
- Detection rates depend on (largely unconstrained) population models
- Cross-correlation with Millennium simulation
- Constraints on DE parameters possible

- O(10) SMBH up to $z \sim 6$
- O(20) EMRI up to z ~ 1
- O(40) sBH up to z ~ 0.1

LISA perspectives

- BNS events with EM transient (z < 2)
- Energy density (and DE) parameters constrained to \sim % level
- Lensing become important

Walter Del Pozzo

Third generation instruments: ET

- Messenger & Read 2012 realised that for BNS, knowledge of the equation of state allows to infer the redshift from GW alone
- Third generation IFOs such as ET

Cosmology from GW alone

		ļ						-
•	•	i	•	-	•	-	-	-
		ł		-		-		_
		i					/	
		į	-	`	^		•	1
	-	ł	•	-	2	~	^	4
	/	٠						
•	•	i	•	-	•	-	•	-
		i						
		j						_
		i						
		i						
		;						
•	•	ì	•	-	•	-	•	-
		į						
		i					/	
		j	/	/	/			
		i						
•	•	i	•	•	•	•	-	
•	•	2	•	-	•	-	•	1
•	•	í	•	-	•	-	•	1
•	•	i	•	-	•	-	•	1
•	•	į	•	-	•	-		-
		i						
•	•	1	•	-	•	-	•	1
		į						
•	•	Ĩ	•	-	•	-	•	1
•	•	į	•	-	•	-	•	-
		i						
		i						
		į		-				
		i						1
		į						
		;						
		Ì						
		i						

Tidal effects enter through the tidal deformability

- The tidal deformability depends on the EOS and on the restframe masses
- We get a "clock" in rest frame of the system => infer masses, distance and redshift simultaneously

Tidal effects in BNS

Perspectives from ET (BNS alone)

 Ω_m

 Ω_{Λ}

	Δh				
Model	10^{3}	10^4	10^5	10^{6}	107
Flat FRW	$0.5 imes 10^{-1}$	1.6×10^{-2}	$0.5 imes 10^{-2}$	1.6×10^{-3}	0.5×10^{-3}
General FRW	$4.6 imes 10^{-2}$	1.5×10^{-2}	$4.6 imes 10^{-3}$	$1.5 imes 10^{-3}$	4.6×10^{-4}
General FRW+DE	$0.8 imes 10^{-1}$	2.5×10^{-2}	0.8×10^{-2}	2.5×10^{-3}	0.8×10^{-3}
	$\Delta\Omega_m$				
Model	10^3	10^4	10^5	10^{6}	10^7
Flat FRW	$1.3 imes 10^{-1}$	4.0×10^{-2}	1.3×10^{-2}	4.0×10^{-3}	$1.3 imes 10^{-3}$
General FRW	$1.3 imes10^{-1}$	$4.2 imes 10^{-2}$	$1.3 imes 10^{-2}$	$4.2 imes 10^{-3}$	$1.3 imes 10^{-3}$
General FRW+DE	$1.9 imes 10^{-1}$	$0.6 imes 10^{-1}$	$1.9 imes 10^{-2}$	$0.6 imes 10^{-2}$	1.9×10^{-3}
	$\Delta\Omega_{\Lambda}$				
Model	10 ³	10^4	10^5	10^{6}	10^7
General FRW General FRW+DE	$2.3 imes 10^{-1}$ $2.8 imes 10^{-1}$	$0.7 imes 10^{-1}$ $0.9 imes 10^{-1}$	$2.3 imes 10^{-2}$ $2.8 imes 10^{-2}$	$0.7 imes 10^{-2}$ $0.9 imes 10^{-2}$	2.3×10^{-3} 2.8×10^{-3}
	Δw_0				
Model	10^3	10^4	10^5	10^{6}	10^7
General FRW+DE	$0.8 imes 10^{\circ}$	$2.5 imes 10^{-1}$	$0.8 imes 10^{-1}$	$2.5 imes10^{-2}$	$0.8 imes 10^{-2}$
	Δw_1				
Model	10 ³	10^{4}	10^5	10^{6}	10^7
Conoral FRW+DF	$1.0.0 \times 10^{0}$	2.0×10^{-1}	0.0×10^{-1}	2.0×10^{-2}	0.0×10^{-2}

Walter Del Pozzo

- GW and EM have detection thresholds
 - e.g. for GW, $\rho(x, \Omega) > \rho_T$
- Consider a population of indistinguishable GW events $p(N \mid T, \Omega, \lambda, HI) = \frac{(R(\Omega, \lambda)T)^N e^{-R(\Omega, \lambda)T}}{NT}$
- λ are population parameters (e.g. mass function)
- $R(\Omega, \lambda)$ is the integrated merger rate

Selection and population effects

- However, each GW event D_i is characterised by its own set of parameters x_i , so we need to consider $p((\overrightarrow{D}, \overrightarrow{x}) | T, \Omega, \lambda, HI) = \prod_{i=1}^{n} p(D_i | x_i \Omega \lambda HTI) p(x_i | \Omega \lambda HTI) e^{-R(\Omega, \lambda)T}$ i=1
- If $N = N_o + N_m$ $p((\overrightarrow{D}, \overrightarrow{x}) | T, \Omega, \lambda, HI) = \prod_{i=1}^{N_o} \mathscr{L}(D_i;$ i=1

Selection and population effects

individual likelihood population based prior $\propto \frac{dR(\Omega, \lambda)}{dx_i}$

• Define $p(D_i | x_i \Omega \lambda HTI) \equiv \mathscr{L}(D_i; x_i)$ and $p(x_i | \Omega \lambda HTI) \equiv f(x_i)$

$$; x_i) f(x_i) \prod_{j=1}^{N_m} \mathscr{L}(D_j; x_j) f(x_j) e^{-R(\Omega, \lambda)T}$$

over them (e.g. Mandel et al, arXiv:1809.02063)

$$p((\overrightarrow{D}, \overrightarrow{x})_o | T, \Omega, \lambda, HI) = \prod_{i=1}^{N_o} \mathscr{L}(D_i)$$
$$R_o(\Omega, \lambda) = \int_{D|detection} dD dx \mathscr{L}(D; x) f(\Omega)$$

• Which is the integral on all possible datasets and all possible population parameters that would be detected

Marginalisation over N_m

• We do not know how many events we missed, so we marginalise

 $Y_i; x_i) f(x_i) e^{-R_o(\Omega,\lambda)T}$

(x)

- Mis-modeling the population might lead to significant biases in Ω (e.g. Mastrogiovanni et al, arXiv:2103.14663)
- Simultaneous inference of λ and Ω
 - Larger number of GW events needed than "naive" simulations suggest
 - Significant computational challenge

Population effects

- The situation is further complicated for the statistical method $p(z \mid \Omega HI) = p(z \mid \Omega HGI)p(G \mid \Omega HI) + p(z \mid \Omega H\overline{G}I)p(\overline{G} \mid \Omega HI)$ $p(G \mid \Omega HI) \equiv p(\overrightarrow{L}_{o} \overrightarrow{z}_{o} \mid \Omega HI)$
- $p(\vec{L}_{o}\vec{z}_{o}|\Omega HI)$ is obtained by marginalisation over the unarXiv:1908.06060)

EM selection effects

detected galaxy population (see Kelly et al, arXiv:0805.2946, LVC

Selection effects: summary

- Selection effects are extremely important
 - both the GW and the EM selection functions depend on Ω
- Full, general treatment not yet demonstrated
 - Simplifications possible for local (z<0.1) sources
 - High redshifts will require full treatment

- GW observation allow cosmological measurements that are independent of the cosmic distance scale ladder
 - independent tests of current cosmological paradigm
- Second generation instruments will constrain Hubble constant
 - GW170817 stupendous glimpse in the future
 - Statistical methods based on cross correlations with catalogs are possible and should lead to ~few % H0 determination - but remember selection effects
- LISA ultimate probe for GW cosmology

Conclusions

