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Stochastic GW background (SGWB)

A stochastic background of gravitational waves has resulted from the
superposition of a large number of independent unresolved sources.
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...
SGWB = symphony of the Universe

Orchestra




...
SGWB = symphony of the Universe

whether there is someone directing is out of the scope of the lecture

? Orchestra




AT
Decoupling

The condition for a particle to decouple from the primordial plasma is:

Interaction / \ Hubble time

rate (expansion)
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Cosmological background

* Unique window on the very early stages of the Universe and on the physical

laws that apply at the highest energy scales (potentially up to the Grand Unified
Theory (GUT) scale 106 GeV).

= Results from the amplification of vacuum metric fluctuations during inflation
(see arXiv:1610.06481)

= Active sources could have enhanced GW production at the end of inflation
(particle production, reheating, spectator fields, primordial black holes)

= Other models include cosmic phase transitions, topological defects (cosmic
(super)strings)



Cosmic strings (superstrings)

1D topological defects which can be formed in GUT-scale phase transitions in the early
Universe. Strings are charactarized by 2 parameters: tension and intercommutation
probability p.




Cosmic strings (superstrings)

= 1D topological defects which can be formed in GUT-scale phase transitions in the early
Universe. Strings are charactarized by 2 parameters: tension and intercommutation

probability p.

*They can produce large amount of GWs through the production of loops (cusps and
kinks).
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Phase transitions

First order phase transitions in the early Universe can produce a large amount of GWs
through bubble collisions, sound waves and magnetohydrodynamic turbulence.
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Phase transitions

= GUT (101>-10¢ GeV): Pulsar Timing Array
= Electroweak (130 GeV) : LISA

*» In LIGO/Virgo PT occuring at 107-101° GeV
not accessible by LHC (see arXiv: 2102.01714)
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AT
Astrophysical Backgrounds

= All the sources that cannot be resolved individually (overlapping or below
threshold)

* Complementary to individual detections (probe the high redshift population)

= (Carry lots of information about the star formation history, the metallicity
evolution, the average source parameters.

= May have different statistical properties: non continuous, non-Gaussian, non
isotropic

*= But can be a noise for the cosmological background
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Astrophysical Backgrounds

= Formed by sources that cannot be resolved individually

Compact binary coalescences, pulsars, core- collapse supernovae, BH ringdown, initial
instabilities in neutron stars

= Complementary to individual detections (probe the high redshift population)

Carry lots of information about the star formation history, the metallicity evolution,
the average source parameters.

= But can be a noise for the cosmological background

May have different statistical properties: non continuous, non-Gaussian, non isotropic



Characterizing the SGWB

Assuming the background is Gaussian, stationary, isotropic and unpolarized (by

analogy with the CMB), it can be completely characterized by the dimensionless
spectral energy density parameter :

energy density in GWs
e

p, df
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Background from inflation
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Constraints from CMB

Energy density in GWs :
dp
Q (=1L
p. df

Amplitude scales with r=T/S

Spectral shape depends on r:

Q_ (f)=f" withn, =-r/8

log[ Qey(f)h°]
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Bicep2 /Keck/Planck gives r<0.1 at 95% confidence (arXiv:1510.09217)



Astrophysical Backgrounds
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Implications of the LIGO/Virgo detections

= The events we detect now are loud individual sources at close distances

= Many more individual sources at larger distances that contribute to create a
stochastic background, which could be the next milestone for LIGO/Virgo.

= Using mass distributions and local rates derived from the first observations,
we were able to revise previous predictions of the GW background from BBHs
and BNSs.



Stochastic background from BNSs and BBHs

Energy density in GWs given by:

1

Qcew(f) = o

FE(f)

fmax dz dE g, - dR
with  F()= [ s S M0+ 2) G )

/ N

Spectral properties
of individual sources
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Stochastic background from BNSs and BBHs

Rm(z) AV
(1+z) dz

The rate per redshift interval in the observer frame: dr (z) =

- C r(2)? r(z) _c °d
H, Ez(2) - H, ), Ez?)

and R (3) = / SFR(z)P(tdldtd\
Probability distribution of the delay between

formation of the massive progenitors and merger

: dV
with 27 — 4
- (2)

1 .
P(td) ~ t_ m [tmz’n _ tmax]
d
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Stochastic background from BNSs and BBHs

The energy density, in the inspiral phase and up to the last stable orbit is:

dEN,C ; _ 5(Gm)2BMIPF,
ar, )= 12

where F, = (1 + cos?1)? /4 + cos? ¢

f—1/3

Adding post newtonian corrections and including merger and ringdown phase for BBHs:

dEPC dEN C (1 + Zz =2 0{1 1)2 lf fs < fmerg
df (fs) = df (fs) fswm(l + Zz 1 €V )2 if fmerg < fs < frzng
’ : l/awr['2(fs,fr1ngaa) if frtng < fs < fcut

arXiv:0909.2867
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Estimate from Detected Sources
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Time domain behavior

Depending average number of events 1.5 X107
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Residual background

“A stochastic background of gravitational waves has resulted from the superposition of a
large number of independent unresolved sources.”

= Unresolved may mean that sources overlap (cosmological) or that the sources are too
faint to be detected (example CBCs, see arXiv:2002.05365)

» The residual is the background after detected individual sources have been removed



...
Residual background

For CBCs the background decreases as the sensitivit of the detectors increases
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Data Analysis Principle

Search for excess of coherence in the cross correlated data streams from multiple
detectors with minimal assumptions on the morphology of the signal.

= Assume stationary, unpolarized, isotropic and Gaussian stochastic background.

= Cross correlate the output of detector pairs to eliminate the noise:

s =h +n.
1 1 1

<s,s, >:<h1h2 >+<né2 >+<hé2 >+<%h2 >

0 0 0
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Cross Correlation Statistics

Standard CC statistics (Allen & Romano, 1999, PRD, 59, 102001)

= Frequency domain cross product: Y = j §’1k (FO(f S, (f)df

()R, (f)
F°RUAP(f)

in the limit noise >> GW signal

optimal filter: Q(f)«

withQ  (f)=Q f*

Mean(Y)=Q,T, Var(Y)=c>e<T, SNR ocy/T
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Overlap Reduction Function

Loss of sensitivity due to the separation and the relative orientation of the detectors.
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Detectability

» The signal-to-noise ratio for multiple pairs of detectors:

2

1/
B 3H3 00 n 737(f)93w(f)
SNR = 155 V2T [ @ 2 2 TR DB

= The power integrated curves give a graphical representation of detector sensitivity for

SGWAB, taking into account the integration over time and frequency. See Thrane &
Romano, arXiv:1310.5300.

= Can apply to LVK, LISA, PTA



...
Detectability

Power integrated curve:
if a GW spectrum crosses
or is tangent to the curve it
can be detected at 2-
sigmas after 2 years
(assuming 50% duty cycle)
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...
Pre-analysis: data cut

= data split into half-overlapping 192s segments, downsampled to 1024 Hz, Hann
windowed, HPF, Fourier transformed and coarse grained to 0. 03125 Hz.

= remove time segments where the noise is non stationary

1) o) oj+1(f)

Oj4+1 + 051
0j — ———
2

S 0.20’j

" remove frequency bins which display coherence with auxiliary chanels (power
mains, GPS timing, Schuman resonances).

= assume ~5% calibration uncertainty.
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Constraints on the GW energy density from LVK

= No evidence for a stochastic background (cosmological or astrophysical).

= But set upper limits on the total energy density:

from CBCs Uniform prior Log-uniform prior
\o 03 02 [43] Improvement 03 02 [43] TImprovement
Q’ 1.7x 107" 6.0 x 107° 3.6 58 x 1077 3.5x107° 6.0
2/3 [1.2x107% 48 x 1078 4.0 3.4x107° 3.0x10°8 8.8
3 1.3x107? 7.9 x 1077 5.9 3.9%x107"% 5.1 x1077 13.1
Marg.|2.7 x 107% 1.1 x 10~ 4.1 6.6 x 107 3.4x107°® 5.1

arXiv:2101.12130



Constraints on cosmic strings models

3 models based on Nambu-Goto numerical simulations (A, B and C) with cusps, kinks and

kink-kink collisions
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Constraints on cosmic strings models (p=1)

The stochastic analysis of 01+02+03a gives the best constraints for B and C (PTA for A)
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...
Constraints on phase transitions fromLVK

Spectrum modeled by a broken power law whose peak frequency depends on the temperature of the PT

Sound waves (SW) Bubble collisions (BC)
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Search for extra polarization

= Most alternative theories of gravity have extra scalar and vector polarization modes
and give additional contributions to the energy density of the SGWB.

Y

xXory

Plus Cross

= We assume that the background is Gaussian, isotropic and stationary, uncorrelated
between polarization modes and that the tensor and scalar contributions are

individually unpolarized. Overlap reduction functions

(31(H)35(f) = 6(F = ) D _va(H)HA(S)
A
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Search for extra polarization




AT
Constraints on extra polarization from LVK

Polarization 03 02 [43] |Improvement
Tensor 6.4x1077(3.2x10°° 5.0
Vector [7.9x 1077|129 x 10°8 3.7
Scalar 2.1 x 107%6.1 x 1078 2.9

arXiv:2101.12130
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Directional searches

* relax assumption of isotropy and generalize to arbitrary angular distribution.

d 272 A .
Qo (f) = ZLN = Z () [ adP@)

P(Q) = Paea(Q)

* by applying appropriate time varying delays between detectors it is possible to
map the angular power distribution in a pixel or spherical harmonic basis

radiometer analysis for point-like sources: P (Q) = 77(@0)52 (Q, QO)

spherical harmonic decomposition: P(Q) =) PiyYim ()



...
Models of Anisotropies

= We expect anisotropy due to the finitness of the number of sources, the nature of
spacetime along the line of sight, and for astrophysical models the local distribution of

matter.

= Recent efforts in modeling the anisotropy of the SGWB

Cusin et al., Phys.Rev.D96.103119, arXiv:1711.11345 (formalism), arXiv:1803.03236 (compact binary mergers), Jenkins
& Sakellariadou arXiv:1802.06046 (formalism and cosmic strings), Jenkins, Sakellariadou, Regimbau & Slezac
arXiv:1806.01718 (compact binary mergers, analytical + galaxy catalog).

= (Can be extended to any type of SGWB from cosmological or astrophysical origin.



Anisotropies from Compact Binary Mergers

2
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arXiv:1802.06046



Radiometer: LVK results

Max SNR. (%
a | Qow  H(f) |[[HL(O3) HV(03) LV(03)
0 |constant o f ° ||2.3 (66) 3.4 (24) 3.1 (51)

ges (107%)
O1 + 02 (HL)

4521
2/3 | o f2? o f77/3|2.5 (59) 3.7 (14) 3.1 (62) 2.3 - 12
3 | o« f* constant|[3.7 (32) 3.6 (47) 4.1 (12) 0.047 — 0.32

arXiv:2103.08520
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Radiometer: LVK results

Max SNR (% ge (1077)
a | Qcw  H(f) |[|HL(O3) HV(03) LV(03) O1 + 02 (HL)
0 [constant oc f > [[1.6 (78) 2.1 (40) 1.5 (83) 7.8-29
2/3 | o< f2* o f77/3(|3.0 (13) 3.9 (0.98) 1.9 (82) 6.5-25
3 | o« f* constant||3.9 (12) 4.0 (10) 3.9 (11) 1.9-11

a=2/3

SNR TR

90% UL

arXiv:2103.08520




SHD: LVK results

Max SNR (% ge (1079)
a | Qcw  H(f) |[HL(O3) HV(03) LV(03) O1 + 02 (HL)
0 [constant oc f° [[1.6 (78) 2.1 (40) 1.5 (83) 7.8-29
2/3 | o< f2* o f77/3(|3.0 (13) 3.9 (0.98) 1.9 (82) 6.5-25
3 | o f® constant|[3.9 (12) 4.0 (10) 3.9 (11) 1.9-11

a=2/3

SNR

90% UL
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Conclusion

The preliminary goal is to measure the isotropic SGWB.

At the end of 2020, the NANOGrav collaboration gathered evidence of fluctuations in the
timing data of 45 pulsars, which could be compatible with a stochastic gravitational wave
background (SGWB) signal at nanohertz frequencies.

= The background from CBCs have a good chance to be detected in the next few years with
LVK. CS and PT are also very promising candidates.

= With 3G the goal will be to subtact the background form CBCs, to recover the cosmological
background below (Regimbau et al., PhysRevLett.118.151105; Sachdev et al.
PhRvD.102b40515).

= Many other searches in LVK can lead to very interesting results (non-isotropic, non
standard polarization, non Gaussian?). These searches could be extended to LISA.


https://arxiv.org/abs/2009.04496

