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Topics

� Compact objects & compactness

� WD: Degenerate Fermi gas

� WD: Chandrasekhar mass

� NS: TOV equations & Buchdal limit

� NS: Maximum mass & Mass-radius diagram

� NS: Pulsations & stability

� NS: Equation of State

� BH: Schwarzschild solution and maximal extension

� BH: Birkhoff theorem & Schwarzschild's Orbits

� BH: the simpest GR 2-body problem

� BH: Gravitational collapse

� BH: Perturbation, Stability & Quasi-Normal-Modes

� BH (in binaries): Ringdown

� NS (in binaries): Love number, tidal polarizability & interactions



  





  

Black holes

Translation: https://arxiv.org/abs/physics/9905030

Original paper: https://archive.org/details/sitzungsberichte1916deutsch/page/188/mode/2up?view=theater

● Eddington (1924)

● Lemaitre (1933) 

● Finkelstein (1958)  “a perfect unidirectional membrane: 
causal influences can cross it in only one direction”



  



  



  

Quasar
C348 @ 1.4GHz

● 50s Radio sources of small size
● 60s Optical counterparts w\ High redshift (z ~ 7)
● Very luminous & extra-galactic? (> nuclear fusion, supernovae)
● 1964 Salpeter&Zeldovich: Supermassive BH + accretion disk
● Confirmed by

○ X ray observations of BH (next slide)
○ 1971 Peterson and Gunn: Galaxies containing quasars showed the same 

redshift as the quasars
○ 1979 Walsh,Carswell&Weyman: Grav. Lensing 



  

X-ray astronomy

R.Giacconi (Nobel Prize 2002)

● Hot gases at T ~ 1,000,000K emit X-ray
● 1962 Scorpius X-1 

○ Strongest X-ray source together the Sun.
○ Low-Mass-X-ray binary 

○ 1.4M
Sun

 NS + 0.42 star

● 1964 Cygnus X-1
○ High-Mass-X-ray binary 

○ 14.8M
Sun

 BH + 20-40M
Sun

 supergiant star



  

Sagittarius* A

Mass ~ 4 million MSun ! => Supermassive BH 

Galaxy center; Orbits’ speed ~ 2% c



Weiss,Barish,Thorne Nobel Prize 2017

Since 2015, LIGO-Virgo observations

Gravitational-wave observations



  

Gravitational collapse



Birkhoff's Theorem

Theorem 1. Birkhoff (1923). The Schwarzschild metric is the unique vacuum solution in spher-

ical symmetry.

Sketch of the proof.

i. Any spherically symmetric spacetime (three spacelike rotational Killing vectors) can be foli-

ated in 2-spheres

ii. The most general form of the metric is

g=¡e2�(t;r)dt2 + e
2�(t;r)

d2r+ r2d 2
 (1)

iii. Use EFE to �eliminate� the time dependence

Corollary 2. Any spherically symmetric vacuum spacetime is static.

Physically, the staticity result can be understood as the absence of gravitational monopole

radiation (analogous to the fact that the Coulomb solution is the only spherically symmetric

solution of Maxwell equations in vacuum).

For example the exterior spacetime of a gravitationally collapsing spherical body is static always

given by the static Schwarzschild metric.



Orbits

Geodesics of photons and particles in the Schwazrschild metric can be analyzed introducing the

constants of motions associated to each Killing vector K� of the spacetime. Exactly as in the

Newtonian problem the motion is on a plane and the relevant equations are

¡T�
dx�

d�
=

�

1¡
2M

r

�
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:=A(r)

t_= const :=E energy (2)

��
dx �

d�
= r2�_ = p�= const=:L angularmomentum (3)

¡s= g��
dx�

d�

dx�

d�
(4)

where s=0; 1 for photons and unit-mass test particles respectively. The key equation resulting

from the ones above is remarkably simple:

r_ +V =E2 (5)

with the potential

VL: =A(r)

�

s+
L2

r2

�

= s¡ s
2M

r
+
L2

r2
¡
2ML2

r3
(6)

This result is analogous to the Newtonian motion in a central potential plus a GR term �r¡3:



  

Orbits



The analysis of the orbits is thus performed by analyzing the stationary points of the potential

(Note r_2=E2¡VL� 0):

0=
dVL

dr
= sMr2¡L2r+3ML2

d2VL

dr2
=2sMr¡L2 (7)

Short summary of relevant feats:

Photons (s=0)

� The potential has maximum at r= 3M (for L> 0), called light ring with energy ELR=

V (3M)
p

= L2/(27M2)
p

� The light ring corresponds to an unstable circular orbit

� Incoming photons with E >ELR (E <ELR) continue to r=2M and below (hit a turning

point at a minimum radius and reverse the trajectory)

Particles (s=1)

� The potential has extrema at r�=L2� L2(L2¡ 12M2)
p

with energies E�

� The values r� correspond to an unstable and a stable circular orbit respectively

� r= r+= r¡=6M is the last stable orbit (LSO) or innermost stable circular orbits (ISCO)

� Incoming particles with E >E¡ (E <E+) continue to R= 2M (hit a turning point and

reverse)

� Particles with E¡<E <E+ move on bound orbits (not necessarily closed; precession)



The simplest relativistic two-body problem

Imagine a small but finite mass on a circular orbit around a nonrotating black hole. The emission

of gravitational radiation determines a deviation from geodesic motion. If initially r� 2M , the

emission timescale is much longer than the orbital period and one can approximate the dynamics

as a sequence of circular orbits with progressively smaller radius and higher frequency (adiabatic

approximation). While at some point the adiabatic approximation will break, we can still analyze

the motion and make some predictons/estimates.

The orbital radius will continue decreasing to the LSO. Below that point, no stable circular orbit

is possible and the particle will fall to r=2M and then down to r=0.

) The �two bodies� collide and merge!

The orbital frequency of the LSO is easily found from the angular momentum value at r+=6M :


2=
L2

r4
=

M

r2(r¡ 3M)
= 6¡3/2M¡2 (8)

or (M
) 2=6¡3/2, the corresponding gravitational frequency is twice this value and provides an

estimate of the merger frequency of the binary. Similarly, the energy of the LSO is

E=
r¡ 2M

[r(r¡ 3M)]1/2
=

8

9

r

(9)

Thus, the energy emitted in gravitational waves (per unit mass) is 1¡E� 0.06 .



Exercises

1. Derive the formulas used above to discuss the orbits.

2. Derive the Hamiltonian of particles [Hint: Start from circular orbits]

3. Estimate the gravitational-wave merger frequency of a binary neutron star made of two euqal-

masses neutron stars of 1.4M�. Comment about the result.

4. Estimate the gravitational-wave merger frequency of an equal-mass binary black hole system

of stellar-mass black holes of 30M� and supermassive black holes of 106M�.

5. The correct result of the previous exercise is 2M
'0.36. Can you say why it holds for both

cases (i.e. why there is a trivial mass scale)?



  

Perturbations & Stability



  

Quasi Normal Modes (QNMs)



  



  Signal from NS rotating collapse



  

QNMs in binary black holes remnants

“It was a natural question then to ask: how does one see 

a black hole? So, using a computer, I scattered packets 

of gravitational waves from a black hole and the 

quasinormal modes emerged carrying the signatures of 

the black hole… this was theoretical. I had never 

dreamed that this would take on an aspect of reality 

some day,” 

Prof. Vishveshwara (6 March 1938 – 16 January 2017)

[www.thehindu.com]



  

Origin of QNMs

Review: https://arxiv.org/abs/0905.2975



Perturbations of spherical spacetimes

Consider the perturbation h�� of a spherically symmetric background metric g��
(0)

(M=M2�

S2) in some suitable coordinates (e.g. Schwarzschild):

g��= g��
(0)
+h�� (1)

Because of the background, the perturbation can be decomposed in scalar Y`m, vectors Za
`mand

tensor Zab
`m spherical harmonics with indexes (`;m)and further separated between even (electric-

type) and odd (magnetic-type) parity according to the behaviour under reflection trhough the

origin: (¡1)` and (¡1)`+1:

h��=h��
(e)
+h��

(o)
(2)

For example, the decomposition of the even parity part reads (A=0; 1; a=2; 3)

h��
(e)
=

0

BB
@

H0Y`m H1Y`m hA
(e)
Za
`m

00 H2Y`m
00 00 r2KY`m
ab+ r

2GZab
`m

1

CC
A (3)

where 
ab is the metric on S2 and the metric coefficients do not carry multipolar indexes for

simplicity (A sum on (`;m) is also understood).



Gauge invariant quantities (under infinitesimal coordinate transformations) can be identified

from the above metric. Of particular importance are the two scalar functions for each multipole

(suffix (`;m) understood):

	
(e)
(t; r) and 	(o)(t; r) (4)

The perturbed EFE lead to the Regge-Wheleer-Zerilli (RWZ) wave equation for the above scalar

functions (one for each multipole (`;m) that are all decoupled from each other):

	tt¡	xx+V`=S`m (5)

where x is the tortoise coordinate that maps [2M;1) to (¡1;1)

x=r+2M ln
�
r

2M
¡ 1

�

(6)

S`m is a source term from the stress-energy tensor, and V` is a potential determined by the

background metric that for even and odd parity reads, respectively (�: =`(`+1))

V`
(e)
=A(r)

�(�¡ 2)2r3+6(�¡ 2)2Mr2+ 36(�¡ 2)M2r+ 72M3

r3 ((�¡ 2)r+6M)2
(7)

V`
(o)
=A(r)

�
�

r2
¡
6M

r3

�

(8)



  



There is no dependence on m due to the spherical symmetry of the background. Among the lin-

earized EFE, Eq.(5) plays a special role because its asymptotic solutions for large r represent the

gravitational-wave degrees of freedom in the spin weighted spherical harmonics decomposition

h+¡ ih�=
G

c4

1

r

X

`=2

X

m=¡`

`
(`+2)!

(`¡ 2)!

r
¡
	`m
(e)
(t)+ i	`m

(o)
(t)

�
¡2
Y`m(�; �) (9)

The RWZ problem in vacuum

The initial-boundary value problem with the RWZ requires to chose appropriate initial and

boundary conditions. Because the RWZ potential tends to zero for both x!�1 (horizon and

spatial infinity), the asymptotic solutions at large (tortoise) radii are the solution of the �free�

wave equation on the light cones.

By considering solutions with time dependence 	� e¡i!t (or, equivalently, the Fourier modes),

the RWZ equation can be cast in a form similar to the Schroedinger equation for stationary

states,

d2	~

dx2
+ [!2¡V`]	~ =0 (10)

However, since the RWZ potential is positive, no �bound states� can exists, and the spectrum is

continuous. The physical requirement that no signals can come out from the the horizon, implies

that the boundary condition at x!¡1 is an ingoing wave,

	~ � e¡i!x (x!¡1) (11)



This boundary condition also follows from requiring smoothness. Requiring instead hat no signal

can come in from spatial infinity, implies an outgoing wave for x!+1

	~ � ei!x (x!+1) (12)

With these boundary conditions, Eq.(10) admits solutions for a discrete infinity of complex

frequencies !n with negative imaginary frequencies Im(!n)<0. These damped modes are called

quasi-normal modes (QNMs) appear also in other wave problems with open boundaries, and

generically characterize dissipative systems. Differently from the normal modes of a vibrating

string with �fixed� boundary conditions, QNMs do not form a complete set of eigenfunctions for

the solution.

The presence of damped QNMs in the solutions suggests the stability of Schwatrzschild black

holes under small perturbations (mode stability). The conclusion is correct, although the story

is richer.

Some steps:

� Regge-Wheeler (1957) use a WKB analysis to argue that odd perturbations of the Schwarz-

schild spacetime are stable under the boundary conditions Eq.(11-12)

� Zerilli (1970) obtains the master equation for even parity (same WKB as above applies)

� Vishveshwara (1970) rules out perturbations growing in time because they diverge at the

event horizon, if they fall at infinity.

� Chandrasekhar (1975) finds a map between the odd and even parity perturbations, and proves

the QNMs are �isospectral�



  



� Leaver (1986) formally identifies QNM as pole of a Green function

� Kay & Wald (1987) show that solutions with data of compact support are bounded

� Bachelot and Motet-Bachelot (1993) prove the existance of infinite number of QNMs

Solution by Laplace transform

The Cauchy problem specified by Eq.(5), boundary conditions (like Eq.(11-12)) and initial data

	(0; x) =  (x) and 	t(0; x) =  t(x) with compact support (or sufficiently localized) can be

solved introducing the Laplace transform

�(s; x)=

Z

0

1

e¡st	(t; x)dt (13)

The Laplace transform is defined for positive, real s>0 and can be analytically continued into the

positive complex plane. The equation for � can be immediately found by integrating the RWZ,

�xx ¡(s
2+V (x))�=F (s; x) :=¡s (x)¡ t(x) (14)

Two independent solutions f�(s;x) of the homogeneous equation (F �0) determine the unique

Green function of the problem; the solution is

�(s; t)=

Z

¡1

+1

G(s;x; x0)F (s; x0)dx0=

Z

¡1

+1
f¡(s; x¡)f+(s; x+)

W (s)
F (s; x0)dx0 (15)



where x�=
max

min
(x;x0)andW (s) is the Wrongskian. The formal solution of the Cauchy problem

is then obtained from the inverse Laplace transform

	(t; x)=
1

2�i
lim
R!1

Z

�¡iR

�+iR

est�(s; x) ds (16)

where � (real) is greater than the real part of all the singularities of � .

The Laplace solution contains both the initial data (in F (s; x)) and the boundary conditions.

The latter are implemented in the choice of the homogeneous solutions f�. The integral in

Eq.(16) can be performed using the residue theorem by chosing an appropriate contour in the

complex plane, as determined by the analytical properties of � .

The RWZ potential decays exponentially for x!¡1 , it reaches a maximum and then decays as

1/x2 for x!1. For the RWZ potential can be proven that (Bachelot&Motet-Bachelot 1993):

� f¡ has poles only at negative real integers

� f+ has a branch cut in the negative real axis due to the r¡2 decay at large radii

The solution is then determined by different contributions

	�

Z

�¡iR

�+iR

(:)=

Z

largehalf¡circle

(:)
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Stability of black hole spacetimes

A fundamental question about exact stationary solutions of Einstein's field equations (EFE) like

Minkowski, Schwarzschild or Kerr is their stability under small perturbations. Rigorous proofs

are very nontrivial and usually built on several results.

A very rough scheme is the following:

� Linear mode stability: within linear perturbation theory one proves that the time evolution

of each mode, say 	`m , is bounded (in some norm) for a suitable class of initial data (say,

with compact support).

� Linear stability: mode stability does not, in general, guarantee that a solution composed of

an infinite sum of modes remains bound. Here one proves that all solutions to the linearised

EFE remain bounded for all times by a suitable norm of their initial data. Mode stability is

a necessary condition to linear stability.

� Nonlinear stability: here one considers the more general Cauchy problem in GR with initial

data �near� Minkowski, Schwarzschild or Kerr, and shows that the solution remains bound.



The question of nonlinear stability of Kerr black holes is still open, although many positive results

are available. An incomplete list is:

� [7] First argument for mode stability of Schwarzschild

� [5] Linear stability of scalar perturbation of Schwarzschild

� [8] Mode stability of Kerr

� [2] Nonlinear stability of Mikowski for asymptotically flat vacuum initial data

� [3] Linear stability of Schwarzschild

� [4] Linear stability of scalar perturbation of nonextremal Kerr BH

� [6] Nonlinear stability of Schwarzschild proven for a class of nontrivial perturbations

� [1] All extremal Kerr BH are unstable to gravitational perturbationalong their event horizon

� [?] Nonlinear stability of Schwarzschild
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NS in binaries: tides



53Annual Reviews of Nuclear and Particle Science 
Radice, SB, Perego [ https://arxiv.org/abs/2002.03863 ]

GERG Collection on Binary Neutron Star mergers
SB [ https://arxiv.org/abs/2002.03863 ]

BNS mergers “(2-body dynamics)^4”

Short-lived NS Long-lived NS
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The gravitational-wave spectrum

Tidal interactions!



Tidal interactions in BNS

(Damour&Nagar 2009a 2009b)

Hamiltonian

(Newtonian limit):

Waveform:

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism at LO



[Hinderer 2007, Damour&Nagar 2009a, Binnington&Poisson 2009]

Tidal polarizability coefficients



Factorized (resummed) PN waveform [Damour,Iyer,Nagar 2008]

Includes test-mass limit (i.e. particle on Schwarzschild)

Includes post-Newtonian and self-force results

Uses resummation techniques → predictive strong-field regime

Includes tidal interactions (→ BNS) [Damour&Nagar PRD 2010]

Flexible framework → NR informed

[Buonanno&Damour PRD 2000a, 2000b]

Credit: A.Taracchini/AEI

Effective-one-body framework in a nutshell

Credit: L.Barak



Compact binaries dynamics

The motion and radiation of a system of well separated, strongly self-gravitating (�compact�),

bodies can be described by a �matching� approach which consists in splitting the problem into

two (Damour 1983; Damour, Soffel, Xu 1991)

(i) the outer problem where one solves field equations in which the bodies are �skeletonized�

by worldlines endowed with some global characteristics (such as mass, spin or higher-multipole

moments)

(ii) the inner problem where one obtains the near-worldline behavior of the outer solution from

a study of the influence of the other bodies on the structure of the fields in an inner world tube

around each body

This approach can be used to obtain binary black hole dynamics in post-Newtonian (PN) for-

malism and to prove that the bodies' finite-size correction enters at 5PN.

Inner problem

Definition of multipolar tidal coefficients

Consider a static, spherically symmetric star of massM perturbed by a stationary, external grav-

itational quadrupolar field Eij� @i@j�
external. The star is expected to respond to the external

field by developing a quadrupole moment Qij . This phenomeon is analogous to the electric

polarizability of a medium that, placed in an external electric field, develops a dipole moment.

Assuming a linear response, an (eletric-type) quadrupolar tidal coefficient is defined as

Qij= �2Eij (1)



A more general definition of �2 (valid also for other other multipoles) and the framework for

the actual calculation can be obtained by the following argument.

In the star local frame and for large radii, the metric coefficient g00 (gravitational potential in

the weak field) can be written as

1¡ g00

2
=¡

M

r
+
3

2

Qij

r3

�

ninj¡
1

3
�ij

�

+O

�
1

r4

�

+
1

2
Eijx

ixj+O(r3) (2)

The above expression shows that the tidal coefficient �2 in Eq.(1) can be obtained by matching

the term growing as �r2 to the term falling as �1/r3 of the asymptotics expression of the

(perturbed) metric coefficient.

This procedure can be generalized. In the local frame of the body, define the external gravito-

electric and gravitomagnetic tidal moments

GL : =Gi1: : :i` HL :=Hi1: : :i` (3)

as those multipoles of the perturbed metric that grow as r`. Similarly, the internal mass and

spin multipoles moments

ML SL (4)

are those that decay as r¡(`+1). The multipolar tidal coefficients of the body are then postulated

as those relating the linear response of the internal moments to the external ones

ML= �`GL SL=�`HL (5)



In a linearly perturbed, stationary star spacetime the asymptotics behaviour of the field uniquely

defines these moments (Note: this is different from the vacuum case). In the following only the

gravitoeletric sector is discussed since the magnetic sector is analogous.

Calculation of tidal Love numbers

Consider even parity, stationary perturbations of the TOV metric g��
(0)

g�� = g��
(0)
+h��

(e)
(6)

The h00
(e)

coefficient of the perturbed metric can be expressed in terms of a function H that is

directly related to the logarithm of the enthalpy perturbation. The perturbative equation for H is

H 00+C1H
0+C0

(`)
H =0 (7)

with

C0
(`)

= e2�

�
`(`+1)

r2
+4� (�+P )

d�

dP
+4� (5�+9P )

�

¡ 4�02

C1 =
2

r
+ e2�

�
2m

r
+4�r (p¡ � )

�



(A similar equation hold for odd parity perturbations). In the star interior, Eq.(7) needs to be

solved numerically together with the background equations and by specifying a EOS. In the star

exterior, �=P =0 and m=M , and the equation reduces to the associated Legendre equation

with variable x= r/M ¡ 1. The general solution can be expressed in terms of the associated

Legendre functions

Houter= aP P̂`2(x)+ aQ Q̂`2(x) (8)

The coefficients aP and aQ are to be determined by the boundary conditions, in particular by

the matching with the interior solution. The ratio a` := aQ/aP can be determined by requiring

the continuity of the logarithmic derivative at the surface

y`(r)=
rH 0(r)

H(r)
(9)

i.e.

y`
inner(R)= y`

outer(R)= (1+xR)
P̂`2
0 (xR)+ a`P̂`2(xR)

Q̂`2
0 (xR)+ a`Q̂`2(xR)

(10)

with xR=R/M ¡ 1=1/C ¡ 1 . Note this is a nontrivial statement to check, since it depends

on the EOS (and the regularity of the matter fields at the surface, e.g. the sound speed) and

on the fact that the perturbed star surface does not coincide with the background star radius.

Solving Eq.(10) for a` gives

a`=¡
P̂`2
0 (xR)+Cy`(R)P̂`2(xR)

Q̂`2
0 (xR)+Cy`(R)Q̂`2(xR)

(11)



This coefficient can be now directly related to the tidal coefficient �` . The asymptotic behaviour

of the outer solution is determined by

P̂`2(x)�
�
r

M

�
`+1

Q̂`2�

�
M

r

�
`+1

(12)

such that the growing and falling part of the perturbation are

¡
h00
(e)

�
growing

� aP

�
r

M

�
`+1

Y`m

¡
h00
(e)

�
falling

� aP

�
r

M

�
¡(`+1)

Y`m (13)

The matching gives (reintroducing the constants G and c)

(2`¡ 1)!!G�`= a`

�
GM

c2

�
2`+1

(14)

G�` has dimension of [length]2`+1. The tidal Love numbers are defined as the dimensionless

combination

k` : =
1

2
a`C

2`+1=¡
1

2
C2`+1 P̂`2

0 (R/M ¡ 1)¡Cy` (R)P̂`2(R/M ¡ 1)

Q̂`2
0 (R/M ¡ 1)+Cy`(R)Q̂`2(R/M ¡ 1)

(15)



The tidal polarizability parameters of a star often employed in gravitational-wave astronomy are

defined as

�` : =
2k`

(2`¡ 1)!!C2`+1
(16)

Outer problem

Effective action

Up to 5PN order (O(v/c)10) the motion of two body compact bodies of mass MA A=1; 2 is

described by the effective action

S=

Z
R

16�G
¡

X

A=1

2 Z

M
A
d�A (17)

where an �apportune regularization� must be introduced to deal with the point-mass source term

in the EFE. Note that the calculation of the 5PN dynamics is not yet completed: for nonspinning

bodies, the conservative dynamics is fully known at 4PN, while the waveform at 3.5PN.

Finite-size effects enter at 5PN and the action needs to be augment with the term

Snonminimal=
X

A;`

�
1

2

�`

`!

Z

(GL
A)2 d�A+

1

2

`

(`+1)

�`
A

`!

1

c

Z

(HL
A)2d�A

�

(18)



Tidal Lagrangian at leading order

At leading order the tidal Lagrangian for body A is given by

LT
A
� �2 (GL

A)2 (19)

where the external tidal moment is calculated on the worldline zA
a
of the body as
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with rAB= jzA
a
¡zB

a
j . The calculation uses the formalism of symmetric trace-free (STF) tensors

for multipolar expansions, and in particular the expression
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where n̂L is the STF projection of the of the unit vectors na=(zA
a
¡ zB

a)/rAB . The result is
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The interaction is proportional to the Love numbers (or to the tidal polarizability parameters

�`
A), it is attractive, and it is short-range, e.g. the first term scales as �1/r6 .



Was this useful? Quick self-check:

� What are the two main characteristics of compact objects?

� What is compactness? Make a table with order of magnitude values for mass, radius, com-

pactness, average density for WD, NS, BH (without books/googling)

� What is the origin of pressure support in WD? What is the order of magnitude of the critical

density? What are the values of the adiabatic index above/below the critical density?

� What is the physical origin of the Chandrasekhar mass? Can you provide an order of mag-

nitude argument for the existance of MCh?

� What is the Buchdal limit?

� What is the maximum NS mass Mmax? Can you give an upper bound?

� What is the difference between the WD and the NS EOS?

� What is a black hole? Why and How black holes form from stars?

� What is the LSO? And how can you estimate the merger frequency of black hole binaries?

� What is the RWZ equation? What boundary conditions are usually imposed?

� Are black holes stable? How can one formulate the stability problem?

� What are the Love numbers and the tidalpolarizability parameters? How can they be com-

puted?

Now you can do the proposed exercises and check the references mentioned in the lectures!


