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Topics

e Compact objects & compactness

e WD: Degenerate Fermi gas

e WD: Chandrasekhar mass

e NS: TOV equations & Buchdal limit

e NS: Maximum mass & Mass-radius diagram

e NS: Pulsations & stability

e NS: Equation of State

e BH: Schwarzschild solution and maximal extension
e BH: Birkhoff theorem & Schwarzschild’s Orbits

e BH: the simpest GR 2-body problem

e BH: Gravitational collapse

e BH: Perturbation, Stability & Quasi-Normal-Modes
e BH (in binaries): Ringdown

e NS (in binaries): Love number, tidal polarizability & interactions
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Black holes

Setzt man diese Werte der Funktionen f im Ausdruck (9) des
Linienclements ein und kehrt zugleich zu gewdhnlichen Polarkoordi-
naten zuriick, so ergibt sich das Linienelement, welches die
strenge Losung des Eixstrinschen Problems bildet:

dRr:

% . . . —:“R
Uber das Gravitationsfeld eines Massenpunktes e : , o :
Dasselbe enthalt die eine Konstante z, welehe von der Grofie der im

nach del' EINSTEINSChen Theorie. Nullpunkt befindlichen Masse ablingt.

Scuwanesouiio: Uber das Gravitationsfeld eines Massenpunkoes 189

ds' = (1 — :x‘w'll')fll'—l — R (S 4 sin* Tde'), R=(r+2")" (14)

Von K. ScuwarzscuiLo.

(Vorgelegt am 13, Januar 1916 [s. oben S, 42))

Original paper: https://archive.org/details/sitzungsberichte1916deutsch/page/188/mode/2up?view=theater
Translation: https://arxiv.org/abs/physics/9905030

PIYSICAL REVIEW VOLUME 110, NUMBER 4 MAY 15, 1958 Hﬁﬁ_ywnnd
il
Past-Future Asymmetry of the Gravitational Field of a Point Particle The ,."","'f{qm 10% of

Il in their Lagt gppge, "o the

Davip FiNkeLsmem
Stevens Institute of Technology, Hoboken, New Jersey, and New York University, New Vork, New York

- Eddington (1924)

The aoalytic extension of the Schwarzschild exterior solution is given in a closed form valid throughout
empty space-time and possessing no irregularities except that at the origin, The gravitational ficld of a
spherical point particle is then seen not to be invariant under time reversal for any admissible choice of time

. coordinate. The Schwarzschild surface 7= 2m s not a singularity but acts as o perfect unidirectional mem
L4 Le I I laltre 1 933 brane: causal influences can cross it but only in one direction, The apparent violation of the principle of
sufficient reason seems similar to that which is associated with instabilities in other nonlinear phenomena.

* Finkelstein (1958) “a perfect unidirectional membrane:
causal influences can cross it in only one direction”




Clock’s Redshitt:

ds?, _ v/ —goo(o0) 1
dsz — V/—goo(r)  \/1-2GM

One way membrane:
Light cones tilt for » < 2M,
future directed paths are in the direction
of r = 0 (true singularity).

r = 2M is a null surface called event horizon



PHYSICAL REVIEW VOLUME 119, NUMBER § SEPTEMBER 1, 1960
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Maximal Extension of Schwarzschild Metric*

N
SN
0.0

2%
M. D. Kruskart XK
Project Malterhorn, Prine éversttyr Princelon, New Jersey KR,

<P
&

o

%

(Received December 21, 1959)

&

&
o
5%

(>

AL

There is presented a particularly simple transformation of the Schwarzschild metric into new coordinates,
whereby the “spherical singularity” is removed and the maximal singularity-free extension is clearly
it

r = constant < 2M

[ = constant
r = infinity

{ = constant e
r = infinity

> wﬁw

r = infinity

r = infinity

r = constant > 2M
r = constant > 2M

r=2M

Singularity (r = 0) r = constant < 2M

{ = constant
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C348 @ 1.4GHz

Quasar

50s Radio sources of small size
60s Optical counterparts w\ High redshift (z ~ 7)
Very luminous & extra-galactic? (> nuclear fusion, supernovae)
1964 Salpeter&Zeldovich: Supermassive BH + accretion disk
Confirmed by
o X ray observations of BH (next slide)
o 1971 Peterson and Gunn: Galaxies containing quasars showed the same
redshift as the quasars
o 1979 Walsh,Carswell&Weyman: Grav. Lensing




X-ray astronomy

e Hotgases atT ~ 1,000,000K emit X-ray
e 1962 Scorpius X-1
o Strongest X-ray source together the Sun.
o Low-Mass-X-ray binary
o 1.4M, NS +0.42 star
e 1964 Cygnus X-1 -
o High-Mass-X-ray binary
o 14.8M_,  BH +20-40M_ supergiant star

CYGNUS X-1

R.Giacconi (Nobel Prize 2002)

ENERGY (keV)
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Gravitational-wave observations

Since 2015, LlGO-V”’go observations Hanford, Washington (H1) Livingston, Louisiana (L1)
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Weiss,Barish, Thorne Nobel Prize 2017



Gravitational collapse

SEPTEMBER 1, 1939 PHYSICAL REVIEW VOLUME 56

On Continued Gravitational Contraction

QereNmmer Axp H. S
University of Califormrea; e
(Received July 10, 1939)

When all thermonuclear sources of energy are exhausted a sufficiently heavy star will
collapse. Unless fission due to votation, the radiation of mass, or the blowing off of mass by
radiation, reduce the star's mass to the order of that of the sun, this contraction will continue
indefinitely, In the present paper we study the solutions of the grav onal field equations
which describe this process. In 1, general and qualitative arguments are given on the
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the su of the star is pro-
gressively reddened, and can escape over a gively narrower range of angles. In 11, an
analytic solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected, The total time of collapse for an ob-
server comoving with the stellae matter is finite, and for this idealized case and typical stellar
masses, of the order of a day; an external observer sees the star asymptotically shrinking to
its gravitational radius,

GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES

Roger Penrose
Department of Mathematics, BirkbeckCbllege, London, England
(Received 18 December 1964)

The discovery of the quasistellar radio sources
has stimulated renewed interest in the question
of gravitational collapse. It has been suggested
by some authors' that the enormous amounts
of energy that these objects apparently emit
may result from the collapse of a mass of the
order of (10°-10%)M; to the neighborhood of
its Schwarzschild radius, accompanied by a
violent release of energy, possibly in the form
of gravitational radiation. The detailed math-
ematical discussion of such situations is dif-
ficult since the full complexity of general rela-
tivity is required. Consequently, most exact
calculations concerned with the implications
of gravitational collapse have employed the
simplifying assumption of spherical symme-
try. Unfortunately, this precludes any detailed
discussion of gravitational radiation—which

measured by local comoving observers, the
body passes within its Schwarzschild radius
r=2m. (The densities at which this happens
need not be enormously high if the total mass
is large enough.) To an outside observer the
contraction to » =2m appears to take an infinite
time. Neverthel the exist of a singu-
larity presents a serious problem for any com-
plete discussion of the physics of the interior
region.

The question has been raised as to whether
this singularity is, in fact, simply a proper-
ty of the high symmetry assumed. The mat-
ter collapses radially inwards to the single
point at the center, so that a resulting space-
time catastrophe there is perhaps not surpris-
ing. Could not the presence of perturbations
which destroy the spherical symmetry alter

requires at least a quadripole structure. the situation drastically? The recent rotating
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Birkhoff’'s Theorem

Theorem 1. Birkhoff (1923). The Schwarzschild metric is the unique vacuum solution in spher-
ical symmetry. I

Sketch of the proof.

i. Any spherically symmetric spacetime (three spacelike rotational Killing vectors) can be foli-
ated in 2-spheres

ii. The most general form of the metric is /% - .Mi ,CZ
g=—e2?tr) 2 +62’\(t”)d2r+r@ (1)

iii. Use EFE to “eliminate” the time dependence

Corollary 2. Any spherically symmetric vacuum spacetime is static.

—_—
E————

Physically, the staticity result can be understood as the absence of gravitational monopole
radiation (analogous to the fact that the Coulomb solution is the only spherically symmetric
solution of Maxwell equations in vacuum).

For example the exterior spacetime of a gravitationally collapsing spherical body is static always
given by the static Schwarzschild metric.



Orbits

Geodesics of photons and particles in the Schwazrschild metric can be analyzed introducing the
constants of motions associated to each Killing vector K of the spacetime. Exactly as in the
Newtonian problem the motion is on a plane and the relevant equations are

~T, dd::_ <1 — %4)15 =const =: F energy (2)
—A(r)
Cll‘ « 2
O = ¢ =py=-const=:L angular momentum (3)

dz® dxP

=908 gy )

where s =0, 1 for photons and unit-mass test particles respectively. The key equation resulting

from the ones above is remarkably sim

(5)

-3

with the potential

This result is analogous to the Newtonian motion in a central potential plus a GR term ~r
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GR photons (s =0)

Orbits

GR Particles (s=1)
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The analysis of the orbits is thus performed by analyzing the stationary points of the potential
(Note 7* = E? — 17, > 0):

2
0=3Ve _ a2 p2r sz SV _oinge g2 (7)
dr d?“2
_dr T
\_

Short summary of relevant feats:

Photons (s=0)

e The potential has maximum at r =3M (for L > 0), called light ring with energy Frr =
VVBM)=+/L?/(27M?)

o The light ring corresponds to an unstable circular orbit

e Incoming photons with /> E1r (E < Err) continue to 7 =2M and below (hit a turning
point at a minimum radius and reverse the trajectory)

Particles (s=1)

o The potential has extrema at r4 = L? 4/ L?(L? — 12 M?) with energies F+
e The values r correspond to an unstable and a stable circular orbit respectively

o r=r =r_=6M is the last stable orbit (LSO) or innermost stable circular orbits (ISCO)

e Incoming particles with £ > F_ (FE < E) continue to R =2M (hit a turning point and
reverse)

e Particles with £ < ¥ < E. move on bound orbits (not necessarily closed; precession)



The simplest relativistic two-body problem

Imagine a small but finite mass on a circular orbit around a nonrotating black hole. The emission
of gravitational radiation determines a deviation from geodesic motion. If initially » > 2M, the
emission timescale is much longer than the orbital period and one can approximate the dynamics
as a sequence of circular orbits with progressively smaller radius and higher frequency (adiabatic
approximation). While at some point the adiabatic approximation will break, we can still analyze
the motion and make some predictons/estimates.

The orbital radius will continue decreasing to the LSO. Below that point, no stable circular orbit
is possible and the particle will fall to » =2M and then down to r = 0.

= The “two bodies” collide and merge!

The orbital frequency of the LSO is easily found from the angular momentum value at . =6M:

L? M
02=""= —63/2 M2 8
% rt r3(r—3M) (8)
or the corresponding gravitational frequency is twice this value and provides an

estimate of the merger frequency of the binary. Similarly, the energy of the LSO is

Thus, the energy emitted in gravitational waves (per unit mass) is 1 — E%()/OG :



Exercises

1. Derive the formulas used above to discuss the orbits.
2. Derive the Hamiltonian of particles [Hint: Start from circular orbits]

3. Estimate the gravitational-wave merger frequency of a binary neutron star made of two euqal-
masses neutron stars of 1.4M .. Comment about the result.

@ Estimate the gravitational-wave merger frequency of an equal-mass binary black hole system
of stellar-mass black holes of 301/ and supermassive black holes of 1051/,

@The correct result of the previous exercise is 201/ €2~ 0.36. Can you say why it holds for both
cases (i.e. why there is a trivial mass scale)?



Perturbations & Stabllity

PHYSICAL REVIEW VOLUME 108, NUMBER 4 NOVEMBER 15, 1957

Stability of a Schwarzschild Singularity

Turrio Recee, Istituto di Fisica della Universitd di Torino, Torino, Italy

AND

JouN A. WHEELER, Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
—_— (Received July 15, 1957)

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will
undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small
nonspherical perturbation.
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Quasi Normal Modes (QNMs)

Scattering of Gravitational Radiation
by a Schwarzschild Black-hole

Tue discovery of pulsars and the general conviction that
they are neutron stars resulting from gravitational
collapsc have strengthened the belief in the possible
presence of Schwarzschild black-holes—or Schwarzschild
horizons—in nature, the latter being the ultimate stage
in the progressive spherical collapse of a massive star.
The stability of these objects, which has bheen discussed
in a recent report?, ensures their continued existence after

formation. Inasmuch as the infinite redshift associated
with it and its behaviour as a one-way membrane make the
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PHYSICAL REVIEW D VOLUME 5, NUMBER 12

Pulses of Gravitational Radiation of a Particle Falling
Radially into a Schwarzschild Black Hole*

Marc Davis, Remo Ruffini, and Jayme Tiomnot
Joseph Henry Labovatories, Princeton University, Princeton, New Jersey
(Received 20 December 1971)

08540

15 JUNE 1972

Using the Regge-Wheeler-Zerilli formalism of fully relativistic linear perturbations in
the Schwarzschild metric, we analyze the radiation of a particle of mass m falling into a
Schwarzschild black hole of mass M >>m. The detailed shape of the energy pulse and of the

tide-producing P

ts of the Ri tensor at large distances from the source are

given, as well as the angular distribution of the radiation. Finally, analysis of the energy
going down the hole indicates the existence of a divergence; implications of this divergence

as a testing ground of the approximation used are examined.

—(r*-1)/M—>

1 1 A
-0 10 30

— (- t)/)

st

~ R
{c) R3zoxR, W, (6) Oj’m‘/“z

(d) ENERGY FLUX

[oX

0.0

~0.014

-0.02

FIG. 1. Asymptotic behavior of the outgoing burst of gravitational radiation compared with the effective potential,
as a function of the retarded time (f —7%)/M. (a) Effective potential for I =2 in units of M? as a function of the retarded
time (¢ —7*)/M=(T - R*)/M. For selected points the value of the Schwarzschild coordinate # is also given. (b) Radial
dependence of the outgoing field R, (v,?) as a function of the retarded time for I= 2. (c) .ﬁ, (r*,¢) factors of the Rie-
mann tensor components (see text) given as a function of the retarded time for I = 2,3,4. (d) Energy flux integrated
over angles for I = 2,3; the contributions of higher ! are negligible.



Pulses of Gravitational Radiation of a Particle Falling
Radially into a Schwarzschild Black Hole*

Marc Davis, Remo Ruffini, and Jayme Tiomnot
Joseph Henry Labovatories, Princeton University, Princeton, New Jersey 08540
(Received 20 December 1971)

Using the Regge-Wheeler-Zerilli formalism of fully relativistic linear perturbations in
the Schwarzschild metric, we analyze the radiation of a particle of mass m falling into a
Schwarzschild black hole of mass M >>m. The detailed shape of the energy pulse and of the
tide-producing components of the Riemann tensor at large distances from the source are
given, as well as the angular distribution of the radiation. Finally, analysis of the energy
going down the hole indicates the existence of a divergence; implications of this divergence
as a testing ground of the approximation used are examined.
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FIG. 1. Asymptotic behavior of the outgoing burst of gravitational radiation compared with the effective potential,
as a function of the retarded time (f —7%)/M. (a) Effective potential for I =2 in units of M? as a function of the retarded
time (¢ —7*)/M=(T - R*)/M. For selected points the value of the Schwarzschild coordinate # is also given. (b) Radial
dependence of the outgoing field R, (7,t) as a function of the retarded time for I = 2. (c) R, (»*,#) factors of the Rie-
mann tensor components (see text) given as a function of the retarded time for I = 2,3,4. (d) Energy flux integrated
over angles for I = 2,3; the contributions of higher ! are negligible.



QNMs In binary black holes remnants
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Origin of QNMSs
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Figure 2. Integration contour for Eq. (38). The hatched area is the branch cut
and crosses mark zeros of the Wronskian W (the QNM frequencies).

Review: https://arxiv.org/abs/0905.2975



Perturbations of spherical spacetimes

Consider the perturbation s of a spherically symmetrlc background metric gaﬁ (M= M?x
S?) in some suitable coordinates (e.g. Schwarzschi

0

Because of the background, the perturbation can be decomposed in scalar Y;,,,, vectors Z:™ and
tensor Z. 7" spherical harmonics with indexes (¢, m) and further separated between even (e/ectr/c—
type) and ogd (magnetic-type) parity according’to the behaviour under reflection trh trhough the

ongm.(\—L) and(\_)frl.

hyr =0 + ) (2)

For example, the decomposition of the even parity part reads (A=0,1;a=2,3)
M5 &~

HoYom HiYem

ho = " HoVi,

nv \l
1 - 1" /T2KYka2G@

where (), is the metric on S? and the metric coefficients do not carry multipolar indexes for
simplicity (A sum on (¢, m) is also understood).

h(e)Zém

(3)




Gauge invariant quantities (under infinitesimal coordinate transformations) can be identified
from the above metric. Of particular importance are the two scalar functions for each multipole
(suffix (£, m) understood):

and, ¥(9)(¢, r) (4)

The perturbed EFE lead to the Regge-Wheleer-Zerilli (RWZ) wave equation for the above scalar
functions (one for each multipole (¢,m) that are all decoupled from each other):

\Ijtt — \Ijxac + ‘/E :Sém (5)

where x is the tortoise coordinate that maps [2M, 00) to (—o0, 00)

-
:E—r+2Mln<m—1) (6)

Sem is a source term from the stress-energy tensor, and 1} is a potential determined by the
background metric that for even and odd parity reads, respectively (A: =/(({+ 1))

_9)2,:3 9272 . 2,. 3

a5 %) ©)
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There is no dependence on m due to the spherical symmetry of the background. Among the lin-
earized EFE, Eq.(5) plays a special role because its asymptotic solutions for large r represent the
gravitational-wave degrees of freedom in the spin weighted spherical harmonics decomposition

12
b —ih =S 3\ (WO +U0) (6,0 ()

ctr

The RWZ problem in vacuum

The initial-boundary value problem with the RWZ requires to chose appropriate initial and
boundary conditions. Because the RWZ potential tends to zero for both x — o0 (horizon and
spatial infinity), the asymptotic solutions at large (tortoise) radii are the solution of the “free”
wave equation on the light cones.

By considering solutions with time dependence W ~ e~ (or, equivalently, the Fourier modes),
the RWZ equation can be cast in a form similar to the Schroedinger equation for stationary

states,

+(w? A V)T =0 (10)

However, since the RWZ potential is positive, no “bound states’ can exists, and the spectrum is
continuous. The physical requirement that no signals can come out from the the horizon, implies
that the boundary condition at x — —o0 is an ingoing wave,

~

U~e W (p— —00) (11)



This boundary condition also follows from requiring smoothness. Requiring instead hat no signal
can come in from spatial infinity, implies an outgoing wave for z—+o00

U~ et? (17— 400) (12)

With these boundary conditions, Eq.(10) admits solutions for a discrete infinity of complex
frequencies w,, with negative imaginary frequencies Im(w, ) < 0. These damped modes are called
quasi-normal modes (QNMs) appear also in other wave problems with open boundaries, and
generically characterize dissipative systems. Differently from the normal modes of a vibrating
string with “fixed” boundary conditions, QNMs do not form a complete set of eigenfunctions for
the solution.

The presence of damped QNMs in the solutions suggests the stability of Schwatrzschild black
holes under small perturbations (mode stability). The conclusion is correct, although the story
is richer.

Some steps:

e Regge-Wheeler (1957) use a WKB analysis to argue that odd perturbations of the Schwarz-
schild spacetime are stable under the boundary conditions Eq.(11-12)

e Zerilli (1970) obtains the master equation for even parity (same WKB as above applies)

e Vishveshwara (1970) rules out perturbations growing in time because they diverge at the
event horizon, if they fall at infinity.

e Chandrasekhar (1975) finds a map between the odd and even parity perturbations, and proves
the QNMs are “isospectral”
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e Leaver (1986) formally identifies QNM as pole of a Green function
e Kay & Wald (1987) show that solutions with data of compact support are bounded

e Bachelot and Motet-Bachelot (1993) prove the existance of infinite number of QNMs

Solution by Laplace transform

The Cauchy problem specified by Eq.(5), boundary conditions (like Eq.(11-12)) and initial data
U(0,z) =1(x) and Wy(0, x) = ¢)4(x) with compact support (or sufficiently localized) can be
solved introducing the Laplace transform

(b(s,x):/oooe_“lll (t, ) dt (13)

The Laplace transform is defined for positive, real s >0 and can be analytically continued into the
positive complex plane. The equation for ¢ can be immediately found by integrating the RWZ,

3(s 4“ ()¢ s(x) = he(x) (14)

Two independent solutions f. (s, x) of the homogeneous equation (£'=0) determine the unique
Green function of the problem; the solution is

5. 1) — e s . ! s oNdgp! = +oof—(3733— (5,7+) s 2Ndx!
o(s.)= [ Glssa o) (s At p s aar (19)

— 0 - — o0



where z = %(:ﬁ, x')and W (s) is the Wrongskian. The formal solution of the Cauchy problem
is then obtained from the inverse Laplace transform

1 €+ZR
U(t,x) =5 lim
Tl R— oo c— lR

where ¢ (real) is greater than the real part of all the singularities of ¢ .

The Laplace solution contains both the initial data (in F'(s,x)) and the boundary conditions.
The latter are implemented in the choice of the homogeneous solutions fi. The integral in
Eq.(16) can be performed using the residue theorem by chosing an appropriate contour in the
complex plane, as determined by the analytical properties of ¢ .

The RWZ potential decays exponentially for x — —o0, it reaches a maximum and then decays as
1 /22 for x — co. For the RWZ potential can be proven that (Bachelot&Motet-Bachelot 1993):

e f_ has poles only at negative real integers
e /. has a branch cut in the negative real axis due to the@cay at large radii

The solution is then determined by different contributions
e+1R
U ~ / ():/ () + Z res(., Sk) + / (1) (17)
e—1R largehalf—circle ) L J branchcut P

A\

~~ ~ < N :
source term QNMs Late—timetails

L\/m{’%




Figure 2. Integration contour for Eq. ([36). The hatched area is the branch cut
and crosses mark zeros of the Wronskian W (the QNM frequencies).




Numerical solution of the 2+1 Teukolsky equation, application to late-time decays 10
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Figure 3. Evolution of the perturbation field at the horizon and .#* (# = 7/2). The
field is characterized by the quasi normal mode ringdown and a power law tail. The

plot refers to a simulation of an axisymmetric gravitational perturbation (s = —2 and
m = 0) with ID0, I’ = 2 and a = 0.9.



Stability of black hole spacetimes

A fundamental question about exact stationary solutions of Einstein’s field equations (EFE) like
Minkowski, Schwarzschild or Kerr is their stability under small perturbations. Rigorous proofs
are very nontrivial and usually built on several results.

A very rough scheme is the following:

e Linear mode stability: within linear perturbation theory one proves that the time evolution
. V . . PR
of each mode, say@ is bounded (in some norm) for a suitable class of initial data (say,

with compact support).

e Linear stability: mode stability does not, in general, guarantee that a solution composed of
an infinite sum of modes remains bound. Here one proves that all solutions to the linearised

EFE remain bounded for all times by a suitable norm of their initial data—Mode stability s
a necessary condition to linear stability.

e Nonlinear stability: here one considers the more general Cauchy problem in GR with initial
data “near’ Minkowski, Schwarzschild or Kerr, and shows that the solution remains bound.

ST Y




The question of nonlinear stability of Kerr black holes is still open, although many positive results
are available. An incomplete list is:

e [7] First argument for mode stability of Schwarzschild

e [5] Linear stability of scalar perturbation of Schwarzschild

+ [6] Mode stabilty of Kerr

o@lonlinear stability of Mikowski for asymptotically flat vacuum initial data
e [3] Linear stability of Schwarzschild

e [4] Linear stability of scalar perturbation of nonextremal Kerr BH

[6] Nonlinear stability of Schwarzschild proven for a class of nontrivial perturbations

[1] All extremal Kerr BH are unstable to gravitational perturbationalong their event horizon

[{] Nonlinear stability of Schwarzschild

> bg“@&fww% -+ 29’2’4\
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NS In binaries: tides




BNS mergers “(2-body dynamics)"*4”
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The gravitational-wave spectrum
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A @jﬂ interactions in BNS

3 | ==~/ Mi\* M
T__ A B
’12_2' M> v A e B)

(Damour&Nagar 2009a 2009b)

Hamiltonian HEOB W + A o 1
(Newtonian limit):

2G M 3 WLW*
c2r v m/\,ﬁmw

- v~y cosbod 4 Ay

Waveform:

h ~ Af—7/66—’i‘l’(f) ~ Af—7/6€—’i\11p.m.(f)_|_i34_9 /ﬁlg(a}(f))S/Q

—

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism at LO



ravitational Mass M[M]

<

I

C

Tidal polarizablility coefficients

A

1
---- J0348+0432 L ' 10 ' — 2B BHBA¢
——- 1074046620 TN, ---- 2H DD2
)51 —— ALF2 LS200
- \ U - APR4 SFHo
L 103+ —— ENG SLy
T H4 TMI1
2.07 T ' MPAI  —— TMA
: \‘ B\ P, M
i \ MS1 ---- HB
i ) MS1b  —— H3
Lot H = 10°¢ BLh
l" N\
! \
l’ \ g
Lof / W
10t} W
2,
0.5} 3
0.0 . . . o 100} . LN
6 8 10 12 14 16 0.1 0.2 0.3 0.4
Radius R[km] C

[Hinderer 2007, Damour&Nagar 2009a, Binnington&Poisson 2009]



Effective-one-body framework in a nutshell

[Buonanno&Damour PRD 2000a, 2000b]

Real problem -- Effective problem eff ~ ,u\/ A
EKOI‘I"
~v
% M. ________
a Heff

Credit: A. Taracchini/AE|

Factorized (resummed) PN waveform [Damour,lyer.Nagar 2008]
Includes test-mass limit (i.e. particle on Schwarzschild)

Includes post-Newtonian and self-force results

Uses resummation techniques — predictive strong-field regime

Includes tidal interactions (- BNS) [Damour&Nagar PRD 2010]
Flexible framework — NR informed
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Compact binaries dynamics

The motion and radiation of a system of well separated, strongly self-gravitating (“compact”),
bodies can be described by a “matching” approach which consists in splitting the problem into
two (Damour 1983; Damour, Soffel, Xu 1991)

(i) the outer problem where one solves field equations in which the bodies are “skeletonized”
by worldlines endowed with some global characteristics (such as mass, spin or higher-multipole
moments)

(ii) the inner problem where one obtains the near-worldline behavior of the outer solution from
a study of the influence of the other bodies on the structure of the fields in an inner world tube
around each body

This approach can be used to obtain binary black hole dynamics in post-Newtonian (PN) for-
malism and to prove that the bodies’ finite-size correction enters at 5PN.

Inner problem Moy ster (w o v WW}/\%{M 7

Definition of multipolar tidal coefficients

Consider a static, spherically symmetric star of mass M perturbed by a stationary, external grav-
itational quadrupolar field F;; ~ 9,0;0°**™2l The star is expected to respond to the external
field by developing a quadrupole moment ();;. This phenomeon is analogous to the electric
polarizability of a medium that, placed in an external electric field, develops a dipole moment.
Assuming a linear response, an (eletric-type) quadrupolar tidal coefficient is defined as

Qij = 1o E;j (1)




A more general definition of 15 (valid also for other other multipoles) and the framework for
the actual calculation can be obtained by the following argument.

In the star local frame and for large radii, the metric coefficientgravitational potential in
2z
r

the weak field) can be written as

1—goo _ M 3Qi (nnJ — %5” ) + O(%) LB ) o (2)

2 r 23D 2

The above expression shows that the tidal coefficient 12in Eq.(1) can be obtained by matching
the term growing as ~72 to the term falling as ~1 /7 of the asymptotics expression of the
(perturbed) metric coefficient.

This procedure can be generalized. In the local frame of the body, define the external gravito-
- " " . \/\
electric and gravitomagnetic tidal moments

G@:Gil---ie HL::Hil...ig (3)

as those multipoles of the perturbed metric that grow Similarly, the internal mass and
spin multipoles moments
Mg St (4)

are those that decay as'w_ he multipolar tidal coefficients of the body are then postulated
as those relating the linear response of the internal moments to the external ones

M, =L St L (5)

0+1)



In a linearly perturbed, stationary star spacetime the asymptotics behaviour of the field uniquely
defines these moments (Note: this is different from the vacuum case). In the following only the
gravitoeletric sector is discussed since the magnetic sector is analogous.

Calculation of tidal Love numbers

Consider even parity, stationary perturbations of the TOV metric g( )

G % 90 A B (6)

Theefficient of the perturbed metric can be expressed in terms of a function@hat is
directly related to the logarithm of the enthalpy perturbation. The perturbative equation for H is

H'+C H +C"H=0 Imﬁw«@/&% (7)
with
1
Gy = ”[—Wi> ™ (p P,)——|—47T(5,0—|—9P)]—4gb’2
C, = %—F 2>\[2m—|—4ﬂ'7“ p— Q)]



(A similar equation hold for odd parity perturbations). In the star interior, Eq.(7) needs to be
solved numerically together with the background equations and by specifying a EOS. In the star
exterior, p= P =0 and m = M, and the equation reduces to the associated Legendre equation
with variable =7 /M — 1. The general solution can be expressed in terms of the associated
Legendre functions -

HOUr = ap Pro(a) +ag Quala) - xton (8)

—

The coefficients ap and ag are to be determined by the boundary conditions, in particular by
the matching with the interior solution. The ratio ay:=a¢ /ap can be determined by requiring
the continuity of the logarithmic derivative at the surface

pe(r) =T Rafus s J\A@f Linitog o] (9)

H{(r)

Plo(xR) + asPra(zR)

A : (10)
Qu2(xr) + arQe2(zR)

(1—|—£UR)

with zp=R/M —1=1/C —1 . Note this is a nontrivial statement to check, since it depends
on the EOS (and the regularity of the matter fields at the surface, e.g. the sound speed) and
on the fact that the perturbed star surface does not coincide with the background star radius.
Solving Eq.(10) for a; gives

Plo(2r) + Cye(R) Pro(R)

A : (11)
Qu2(zr) + Cye(R) Qea(zR)

Ay = —



This coefficient can be now directly related to the tidal coefficient 1. The asymptotic behaviour
of the outer solution is determined by

A A A ]
P oD e (4 (12)

e rowin €41 e allin _(€+1>
(g y=om ap (L) Vo (B~ ap ()T Vi (13)

The mlatching gives (reintroducing the constants GG and c)

GM)”+1 (14)

(20 — 1)!!G@w< .

G 11y has dimension of [length]?“*!. The tidal Love numbers are defined as the dimensionless

B —

combination
e

1 P(R/M —1)
2 Qi2(R/M — 1)+ Cyu(R)Qe2(R/ M — 1)

1 O20+1 _ _ 102£+1 pﬁl2(R/M —1) = Cye(R)

]Cg . :§ag (15)




The tidal polarizability Yoarameters of a star often employed in gravitational-wave astronomy are
defined as

A, ﬁ‘”&‘hl\ (19

Outer problem

Effective action

Up to 5PN order (O(v /c)!'?) the motion of two body compact bodies of mass M4 A=1,2is
described by the effective action

2
_ [ R A
5—/167@ Azl/M drs (17)

where an “apportune regularization” must be introduced to deal with the point-mass source term
in the EFE. Note that the calculation of the 5PN dynamics is not yet completed: for nonspinning
bodies, the conservative dynamics is fully known at 4PN, while the waveform at 3.5PN.

Finite-size effects enter at 5PN and the action needs to be augment with the term

1 1 ¢ of1
SnonminimaleZ [5%/ (Gf)2dTA+§(£+1> gt; E/(Hf)2d7:4] (18)
Y



Tidal Lagrangian at leading order

At leading order the tidal Lagrangian for body A is given by

L~ p2 (G1)? (19)
where the external tidal moment is calculated on the worldline zj of the body as

GMB)

(20)
rAB|

GL Na Uexternal 8L<

with 7ap = |24 — 2| . The calculation uses the formalism of symmetric trace-free (STF) tensors
for multipolar expansions, and in particular the expression

(=)= (-1 - 1)

TAB TAB

where 1% is the STF projection of the of the unit vectors n® = (24 — 2%) /7ap . The result is

" 20— (GMPB)? " Bg RAEH
Lt~y s g +Z kG (MP)*—2— (22)
I, TAB TAB

The interaction is proportional to the Love numbers (or to the tidal polarizability parameters
A?), it is attractive, and it is short-range, e.g. the first term scales as ~1/7“6.



Was this useful? Quick self-check:

e What are the two main characteristics of compact objects?

e What is compactness? Make a table with order of magnitude values for mass, radius, com-
pactness, average density for WD, NS, BH (without books/googling)

e What is the origin of pressure support in WD? What is the order of magnitude of the critical
density? What are the values of the adiabatic index above/below the critical density?

e What is the physical origin of the Chandrasekhar mass? Can you provide an order of mag-
nitude argument for the existance of Mcy?

e What is the Buchdal limit?

e What is the maximum NS mass M,,.? Can you give an upper bound?

e What is the difference between the WD and the NS EOS?

e What is a black hole? Why and How black holes form from stars?

e What is the LSO? And how can you estimate the merger frequency of black hole binaries?
e What is the RWZ equation? What boundary conditions are usually imposed?

e Are black holes stable? How can one formulate the stability problem?

e What are the Love numbers and the tidalpolarizability parameters? How can they be com-
puted?

Now you can do the proposed exercises and check the references mentioned in the lectures!



