GW data analysis – A primer (2)

Eric Chassande-Mottin

AstroParticule et Cosmologie (APC) CNRS Université de Paris

Summary of Part 1

- Needle in the haystack
- Laid down the observation equation
 - Signal: 2 polarizations, antenna pattern, time delay

 $h_{\text{signal}}(t) = F_{+}h_{+}(t-\tau) + F_{\times}h_{\times}(t-\tau)$

- Noise: additive, Gaussian, colored
- Deduced the likelihood probability distribution and related statistics $p(d|h) = \frac{\exp -\frac{1}{2}(d_i - h_i)C_{ij}^{-1}(d_j - h_j)}{\sqrt{|2\pi C|}}$
- Compact binary coalescences (Detection)
 - Waveform approximants and source parameters
 - Matched filtering: theory and practice. Grid search
 - Noise glitches and their mitigation
 - Event significance and background estimation

Outline – Part 2

- From general principles to transient searches
 - Compact binary coalescences Part 2 (Estimation)
 - General problem statement
 - The Bayesian viewpoint
 - Bayesian samplers
 - Unmodelled transient sources or "bursts"
 - Astrophysical targets and phenomenology
 - Standpoint on analysis
 - Coherent time-frequency searches

Compact binary coalescences – Estimation

Parameter estimation

- Search pipelines deliver candidate events
 - Very crude estimate of the source parameters (best fit template)
 - No uncertainty (error bar)
 - Some parameters are more relevant than others Need to "marginalize" over irrelevant parameters
 - Non-trivial coupling between parameters
 - Model comparison and selection
- Bayesian inference provides a framework to address those issues

Forewords: conditional probabilities

- Probabilities measure "areas" in a given sample space
- **P(A|B) :** probability of A given that B has occurred
 - B is the new "universe" where probabilities sum to 1
 - Initial sample space is irrelevant

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad (\text{requires P(B)} \neq 0)$$

Forewords: conditional probabilities

$$P(A|B) = \frac{1/6}{3/6} = \frac{1}{3}$$

- Probabilities measure "areas" in a given sample space
- **P(A|B) :** probability of A given that B has occurred
 - B is the new "universe" where probabilities sum to 1
 - Initial sample space is irrelevant

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad (\text{requires P(B) \neq 0})$$

Forewords: conditional probabilities

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional probabilities are useful to:

- Build hierarchical or causal probabilistic models
 - Occurence of events under different scenarios, i.e. $P(A|B_k)$
- Include new information into probabilistic models

Bayesian inference (1): Principles

Bayes' rule:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Thomas Bayes An Essay towards solving a Problem in the Doctrine of Chances (1763)

Pierre-Simon Laplace Théorie analytique des probabilités (1812)

- Idea: how can we learn from experience or experimental data in a systematic way?
 - Revise initial beliefs based on observation
- Revert conditional probabilities or causal probabilistic models

Forward modelling

scenario $B_k \rightarrow \text{event A}$ with probability $P(A|B_k)$

Inference

event A \rightarrow preferred scenario B_k with P(B_k|A)

Bayesian inference (2)

 $p(\boldsymbol{\lambda}|d)$ is a probability density – Should sum to 1 p(d) is the normalization factor – **Evidence**

Bayesian inference (3): practical issues

- Come up with reasonable priors (subjective choice)
 - Strong priors may lead to bias

- Map out the posterior distribution in n=17 dimensions
 - Likelihood is a complex distribution with narrow peaks
 - Marginal (e.g, mass) distribution requires to integrate posterior over n-1 parameters – Difficult to compute using standard numerical integration

 \rightarrow Use stochastic integration: Monte-Carlo methods

Bayesian inference (4): Markov-chain Monte Carlo

Propose new sample with **q** Decide to move with **H**: always go up, sometime come down

Transition probability (Metropolis-Hastings)

 $H = \min\left(1, \frac{p(\boldsymbol{\lambda}_{n+1})}{p(\boldsymbol{\lambda}_n)} \frac{p(d|\boldsymbol{\lambda}_{n+1})}{p(d|\boldsymbol{\lambda}_n)} \frac{q(\boldsymbol{\lambda}_{n+1})}{q(\boldsymbol{\lambda}_n)}\right)$ Prior Likelihood Proposal

- Idea: build a iterative stochastic process (random walks) driven to sample from the posterior distribution
 - Generate samples of λ drawn from p(λ |d)
 - Importance sampling: sample first regions with large posterior probabilities
- A fairly large variety of **Bayesian samplers**

Jun 7 2021

Online demo

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana

250

50

0.7

MCMC recipes

Good choice of proposal distribution matters for convergence

Certain posteriors can be very difficult to sample: multi-modal, etc and require other more advanced ingredients

Bayesian samplers are computationally demanding (dominant fraction of CPU budget related to CBC analysis)

Bayesian model selection

Posterior on model M $p(M|d) \propto p(M)p(d|M)$

Odds ratio:

$$O_{n,m} = \frac{p(M_n|d)}{p(M_m|d)}$$
From posterior samples
$$= \frac{p(M_n)}{p(M_m)} \frac{p(d|M_n)}{p(d|M_m)}$$
From posterior samples
$$\frac{\sum_j p(d|\lambda_j, M_n)}{\sum_k p(d|\lambda_k, M_m)}$$
Prior Bayes
factor

Parameter couplings

• Component masses

From the phase evolution, we primarily measure the chirp mass

$$\mathcal{M} = \frac{(m_1 \, m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

• Inclination vs distance

From the signal amplitude evolution, we primarily measure the amplitude of the first polarization

$$A \propto \frac{1 + \cos^2 \iota}{d_L}$$

Cosmology matters

- Observed frequency of the signal is redshifted by a factor of (1+z)
- Masses are inferred from phase/frequency measurement
 [Gmf/c³ is dimension-less]

 $m^{(d)} = (1+z)m^{(s)}$

- z is inferred from distance, thus $m^{(s)}$ is coupled to d_L

Marginal posterior distribution for the component masses of GW170817

Marginal posterior distributions for a selection of astrophysical parameters – GWTC #2

GW190408_181802 GW190412 GW190413 052954 GW190413_134308 GW190421 213856 GW190424_180648 GW190425 GW190426_152155 GW190503 185404 GW190512_180714 GW190513_205428 GW190514_065416 GW190517_055101 GW190519_153544 GW190521 GW190521_074359 GW190527 092055 GW190602_175927 GW190620_030421 GW190630 185205 GW190701_203306 GW190706 222641 GW190707_093326 GW190708 232457 \diamond GW190719_215514 GW190720_000836 \diamond GW190727_060333 \wedge GW190728_064510 GW190731_140936 GW190803_022701 GW190814 GW190828 063405 GW190828_065509 GW190909 114149 GW190910_112807 GW190915_235702 GW190924_021846 GW190929 012149 GW190930_133541

Marginal posterior distribution for the sky coordinates of GW170817

Marginal posterior distribution for the distance and inclination of GW190412

Posterior samples can be downloaded from gw-openscience.org

GW190521

Documentation	H1
Version: v3	
All Versions: v1 v2 v3	P.
GPS: 1242442967.4	Cuarbay 18
UTC Time: 2019-05-21 03:02	
Release: GWTC-2	32sec
GraceDB: S190521g	32sec
GCN: Notices • Circulars	40969
Timeline: Query for segments	16KH
DOI: https://doi.org/10.7935/99gf-ax93	40969

H1 strair	H1 strain				
of the second se	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45 K C C	15 10 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1		
32sec • 16KHz:	GWF	HDF	тхт		
32sec • 4KHz:	GWF	HDF	тхт		
4096sec • 16KHz:	GWF	HDF	тхт		
4096sec • 4KHz:	GWF	HDF	тхт		

GWTC-2 PE for GW190521 (2nd release)

Date added: March 9, 2021

show / hide parameters

	+0.32
chi_eff	0.03 _{-0.39}
chirp_mass (M_sun)	+15.2
	114.8 _{-17.6}
chirp_mass_source (M_sun)	+17.0
	69.2 _{-10.6}
final_mass_source (M_sun)	+36.8
	156.3 -22.4
luminosity_distance (Mpc)	+2190
	3920 -1950
mass_1_source (M_sun)	+28.7
	-18.9
mass_2_source (M_sun)	+22.7 69 0 -22 1
	+0.28
redshift	0.64 -0.28
total_mass_source (M_sun)	+39.2
	163.9 -23.5

Source File

Posterior Samples DCC Entry

Default PE

Skymap

Marginal posterior distribution for the sky coordinates of GW170817

Marginal posterior distribution for the distance and inclination of GW190412

Jun 7 2021

Resources

https://www.gw-openscience.org/software/

Gravitational Wave Open Science Center

🕈 Data- Software- Online Tools- About GWOSC-

Software for Gravitational Wave Data

Many of these packages can be installed through LSCSoft Conda. See installation suggestions on the software setup page.

Bayesian Parametric Population Models

This package provides techniques for inferring the merger rate density for compact binary sources

Source Code

BayesWave

LIG

BayesWave is a Bayesian algorithm designed to robustly distinguish gravitational wave signals from noise and instrumental glitches without relying on any prior assumptions of waveform morphology.

Homepage & Source code

Bilby

The aim of bilby is to provide user friendly interface to perform parameter estimation. It is primarily designed and built for inference of compact binary coalescence events in interferometric data, but it can also be used for more general problems.

- Documentation
- Source Code
- Python package in PyPI

Software packages for Bayesian inference applied to compact binary coalescences

- LALInference https://git.ligo.org/lscsoft/lalsuite
- Bilby https://git.ligo.org/lscsoft/bilby
- Bayesian Parametric Population Models –
 https://git.ligo.org/daniel.wysocki/bayesian-parametric-population-models
- Bayeswave https://git.ligo.org/lscsoft/bayeswave

Unmodelled transient sources or "bursts"

Simulating eXtreme Spacetimes (SXS) project. http://www.black-holes.org. The simulation work was led by Christian Ott at Caltech and the movie was rendered by Steve Drasco at Cal Poly San Luis Obsipo.

https://youtu.be/oxGajNoPz8c

Things that go boom in the night!

- Under the term "burst" are included transient sources whose expected GW signal is not completely known
- Also includes **unexpected astrophysical scenarios** or **unknown physics**
- "Template" waveforms **not available or solely representative** of the true signal (not accurate enough to be used as a template)
- Motivate for other **"agnostic" analysis** approaches

https://youtu.be/8xCme9cKWWc

Phenomenology

- Potential astrophysical sources relate mainly to compact stars (neutron star or black hole)
 - Core collapse supernova
 - Neutron star instabilities
 - Accretion onto a neutron star or black hole
 - Star quakes: magnetars and pulsar glitches
 - Afterglow after binary neutron star mergers
 - Etc...
- But also to other sources such as cosmic string cusps and kinks

Supernovae core-collapse

- Gravitational collapse of the core of a massive star after exhaustion of nuclear fuel
 - **Complex process** that involves many physical ingredients (relativistic hydrodynamics, microphysics, neutrino transport, etc)
 - Modelled through large-scale numerical simulations
 - *Key question*: what level of **non-axisymmetry** can develop during or after the collapse?
 - Different mechanisms or phases potentially leading to substantial GW emission
 - Core bounce, rotational instabilities, standing accretion shock instability (SASI) and PNS pulsations

Supernovae core-collapse (cont'd)

"Post-merger" signal after binary neutron star coalescence

Standpoint on analysis

- Representative waveforms to rely on to guide the search algorithm design and tuning
 - E.g., simulations of core collapse supernovae
 - However, cannot trust 100 % and few examples are available and there is no full coverage of the physical parameter space → templated search not a good idea
- Rather build search pipelines on generic assumptions about the expected waveform features
 - E.g., expected signals can be reasonably well described by the sum of a small number of wave packets
 - Motivation for **time-frequency based searches**
 - Often, based on coherent search paradigm ("multiple detectors" likelihood) for better noise rejection

Time-frequency maps

Spectrogram or short-time Fourier transform

Q transform

S. Chatterji et al. CQG (2010)

Coherent WaveBurst (1)

$$\mathcal{L}(h) \equiv -\log \Lambda = \langle d|h \rangle - \frac{1}{2} \langle h|h \rangle$$

Using a vector-based formalism:

 $\mathcal{L}(h) = d^{T}h - \frac{1}{2}h^{T}h$ Write $h = F\mathfrak{h}$ with $F = \begin{bmatrix} F_{+} & F_{\times} \end{bmatrix} \qquad \mathfrak{h} = \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix}$ Maximize $\frac{d\mathcal{L}}{d\mathfrak{h}} = 0$ and find $\mathfrak{h}^{*} = (FF^{T})^{-1}F^{T} d$

- Generalized likelihood ratio test Maximize over h
- Regularized when antenna pattern *F* is degenerate

$$\mathcal{L}(F\mathfrak{h}^*) = (d^T f_+)^2 + (d^T f_\times)^2$$
Left-singular vectors of F
Set to 0 or weighted when F is singular

- Compute ${\mathcal L}$ over the full sky and obtain a likelihood map

Coherent WaveBurst (2)

$$\mathcal{L}(F\mathfrak{h}^*) = (d^T f_+)^2 + (d^T f_\times)^2$$

First project *d* onto a set of time-frequency bases and select bright pixels

https://gwburst.gitlab.io/

$$\Psi(t) = Ae^{-(t-t_0)^2/\tau^2} \cos(2\pi f_0(t-t_0) + \phi_0)$$

Bayeswave

• Three hypotheses

(1) signal + noise (2) glitch + noise (3) noise only

- Signal and glitch waveform models
 - Sum of Gabor wavelets $h = \sum_{i=1}^{N} \Psi(t; \theta_a)$
 - Signal: coherent model for all ^adetectors
 - Glitch: incoherent (different wavelets for each detector)
- Posterior on parameters obtained using a reversible jump MCMC algorithm
 - Include model order N
- Hypothesis testing using Bayes factor

https://git.ligo.org/lscsoft/bayeswave

Long bursts (> 10 sec) – STAMP-AS

- Piggybacking on searches for stochastic GW background
 - Coherent combining of "whitened" time-frequency maps

$$C(t, f; \theta, \phi) = \operatorname{Re} \left\{ Q_{lm}(t, f; \theta, \phi) \ s^l(t, f) s^{m*}(t, f) \right\}$$

with
$$Q_{lm}(t, f; \theta, \phi) = \frac{e^{2\pi i f(\vec{n}_{\theta, \phi} \cdot \vec{\delta}_{lm})/c}}{\mathcal{N}_{lm}(t; \theta, \phi)}$$

- Excess cross-power in pairs of detectors
 - Search for cluster in outlier map $SNR(t, f; \theta, \phi) = \frac{C}{\sigma_C}$
 - Grid search over the full sky

Burst-related observations ?

- No GW burst candidate so far
- Burst algorithms provides better significance with very massive compact binaries
 - Example: GW190521
 - Better noise rejection for short duration signals?
 - High-order modes leading to SNR loss in matchedfilter searches?

References

- Papers/Reviews
 - LIGO/Virgo, "A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals", Class Quantum Grav 37, 055002 (2020)
- Books
 - Maggiore, "Gravitational Waves: Volume 1: Theory and Experiments"
 - Creighton & Anderson, "Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis"