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Topics

� Compact objects & compactness

� WD: Degenerate Fermi gas

� WD: Chandrasekhar mass

� NS: TOV equations & Buchdal limit

� NS: Maximum mass & Mass-radius diagram

� NS: Pulsations & stability

� NS: Equation of State

� BH: Schwarzschild solution and maximal extension

� BH: Birkhoff theorem & Schwarzschild's Orbits

� BH: the simpest GR 2-body problem

� BH: Gravitational collapse

� BH: Perturbation, Stability & Quasi-Normal-Modes

� BH (in binaries): Ringdown

� NS (in binaries): Love number, tidal polarizability & interactions



  



  

Compact objects are born when normal stars die 



  

Compact objects



  

Compact objects

Extreme matter: Density 

Extreme gravity: Surface gravity

● “cold” : do not burn fuel, no thermal pressure (degenerate matter)

● “small” : significantly smaller radii than stars with same masses



  

WD: Sirius B observation

● Binary system 

● D ~ 8.6 light-years from Earth

● Orbital period ~ 50 yrs

● Sirius A mass ~1 Msun

● Luminosity L ~ 0.06 Lsun

● “white” spectrum → Teff ~ 25,000k

● Radius R ~ 10-2 Rsun

[HST image from wikipedia]
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W.S.Adams (1925) Sirius B redshift measurement z~20km/s 
[ ~89+/-19 km/s Greenstein+(1971), ~80+/-5 HST ]

Prof.Adams has killed two birds with one stone; he has 
carried out a new test of Einstein’s theory of relativity and 
he has confirmed our suspicion that matter 2000 times 
denser then platinum is not only possible, but it is 
actually present in the Universe

A.Eddington (1925)

It seems likely that the ordinary failure of the gas laws 
due to finite sizes of molecules will occur at these high 
densities, and I do not suppose that the white dwarfs 
behave like perfect gas

A.Eddington (1926)

R.H.Fowler (1926) applied the (brand-new) Fermi-Dirac statistic (Dirac 1926):
WD can be supported from gravitational collapse by electron degeneracy pressure



Degenerate Fermion gas EOS: definitions

Number density in phase space (# particles per unit phase space):

dN
d3xd3p

= (2s+1)
h3

f(x; p)|||||||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}}}}}}
prob:densityfun:

(1)

Number density:

n: =
Z

dN
d3xd3p

d3p (2)

Energy density (E2= pc2 +mc2) :

" : =
Z

dN
d3xd3p

Ed3p (3)

(Isotropic) Pressure:

P : =1
3

Z
dN

d3xd3p
p2 c2

E
d3p (4)

At equilibrium the prob.density function is the Fermi-Dirac distribution:

f = 1
e� (E¡�)+1

; with �: = 1
kBT

(5)



Degenerate Fermion gas EOS: Ideal electrons gas

Limits of the Fermi-Dirac

� high-temp/low-density (E� kBT ): f(E)� e� (E¡�)� 1

� low-temp/high-density: f(E)= � (EF ¡E) with E
F
: =�(0) the Fermi energy

Work in the low-temp limit, compute number density, pressure & energy (
R
d3p=4�

R
p2 dp):
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~ 3 � (x) (7)
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x2¡ 1

�
+ ln [x+(1+x2)1/2]
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Similarly:

"e=
me
4 c5

~ 3 � (x) (9)

� (x)= 1
8�

[x(1+x2)1/2 (1+ 2x2)¡ ln [x+(1+x2)1/2]] (10)



Degenerate electron gas EOS: mass density & polytropic limits

In a system with electrons and ions, the charge of each electron is neutralized by a proton which
is turn is accopanied by one or more neutrons in the nucleous. The rest-mass density of the gas
is dominated by the mass of the nucleons since me�mN ; indicating as A/Z the number of
nucleons per electron,

�0=
X

species;s

nsms �ne
A
Z
mN (11)

Total mass density:

�= �0+ "e/c2� �0 (12)

The EOS is parametrically given by Eq.(6),(7),(9) and (11) as functions of x .

For example, by combining Eq.(11) with Eq.(6) the Fermi parameter (momentum) is

x= h
me c

�
3
8�

Z
A

�
mN

�
1/3

(13)

and the other quantities can be expressed as Pe(� ) and "e (� ) .

Note: A/Z� 2 for He, C, O.



Define the critical density

�c :=
1
3�2

A
Z

�
mec
~

�
3
� A
Z
106 g/cm3 (14)

� Low density limit, �� �0 : non-relativistic electrons cpF �mec
2 or x� 1

� (x)� 1
15�2

x5 � (x)� 1
3�2

x3 (15)

� High density limit, �� �0: relativistic electrons x� 1

� (x)� 1
12�2

x4 �(x)� 1
4�2

x4 (16)

In these limits the EOS can be written in the form

Pe=K�0
¡ "e=��0 (17)

with (different) constants K, ¡ and �:
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Degenerate neutron gas EOS

The above derivation is valid for any gas made of non-interacting fermions, by appropriately
substituting the value of the particle mass. For example, a gas of non-interacting neutrons
(mn/me� 103) has a critical density of

�c :=
1
3�2

�
mnc
~

�
3
� 6� 1015 g/cm3 (18)

and it is described by a polytropic EOS with

� �� �c : ¡=5/3 K = 32/3�4/3

5

~2

mn
8/3 � 109 [CGS]

� �� �c : ¡=4/3 K = 31/3� 2/3

4

~c
mn
4/3 � 1015 [CGS]

In this case the mass density �= �0+ " n/c2� "n/c2 is dominated by the neutron's energy
density in the relativistic limit.



Fate of a star with �no fuel�
Without nuclear burning a star decreases its total energy E because of radiation emission from
the surface. The energy source in this phase is the gravitational energy W �¡GM /R: The
virial theorem implies that the star contracts

�E < 0)�R< 0 (19)

For a Maxwell-Boltzmann ideal gas P / kBT , the gravitational energy is proportional to the
average temperature of the star:

¡W =4�
Z
0

RGm(r)� (r)
r

r2dr=4�
Z
0

RdP
dr

r3dr=¡12�
Z
0

R

P r2dr/ T� (20)

(The second equality uses the hydrostatic equilibrium equation, and the third integrates by part).
This implies that, as the radius decreases, the temperature increases as

T��M
R

(21)

At the same time the average density increases as

��� M
R3

(22)

Under these conditions a gas of M�M� becomes degenerate and the star cannot contract for
ever: Pauli's exclusion principle becomes relevant and the Fermi-Diract statistics must be applied.



Indeed, the typical momentum of the electrons in a Maxwell-Boltzmann gas is estimated as

�pe� (kBT�)1/2�
�
M
R

�
1/2

(23)

while their separation is

� qe�
�
1
��

�
1/3

� R

M1/3
(24)

The volume in the phase space is thus

(�pe� qe)3�

 
M1/2

R1/2
R

M1/3

!
3

� (R1/2M1/6)3 (25)

and with all the factors . . .

(�pe�qe)3�40
�
1026

�
M
M�

�
1/6
�
R
R�

�
1/2

[CGS]
�
3

�h3
�
M
M�

�
1/2
�

R
3� 10¡2R�

�
3/2

(26)

Hence, the electron degeneracy pressure starts to support a star of a solar mass that contracts
to �3� 10¡2R�



Exercises

� Derive yourself all the discussed results about the degenerate electron gas

� Use the virial theorem to argue that a star without fuel must contract

� Estimate the gravitational redshift of a photon emitted from the source of a WD



  

Chandrasekhar … has shown that a star of a mass greater than a 
certain limit remains a perfect gas … 

The star has to go on radiating and radiating and contracting and 
contracting until, I suppose, it gets down to a few km radius, when 
gravity becomes strong enough to hold in the radiation, and the star 
can at last find peace. ... I think there should be a law of Nature to 
prevent a star from behaving in this absurd way!

A.Eddington (1935)

It is clear from this statement that Eddington fully realized, already 
in 1935, that given the existence of an upper limit to the mass of 
degenerate configurations, one must contemplate the possibility of 
gravitational collapse leading to the formation of what we now call 
black holes. But he was unwilling to accept a conclusion that he so 
presciently drew.

S.Chandrasekhar (1982)



Landau's argument (1932)

Consider N fermions in a star of radius R, so that the number density is n=N /R3 , �q� (1/
n)3 and, from the Heisemberg uncertainty principle, �p�~n1/3 . The Fermi energy of the gas
in the relativistic regime is

EF �~cn1/3�
~cN1/3

R
(1)

The mass of the star is dominated by the baryons M �NmB and the gravitational energy per
Fermion is

W �¡GMmB

R
=¡GmB

2 N
R

(2)

Define the equilibrium state as the minimum of the total energy

E=EF +W = ~cN
1/3

R
¡ GmBN

R
(3)

There are two cases

i. N small, E > 0: The energy can be decreased by increasing R (decreasing EF). When W
dominates, E becomes negative and then tends to zero for large R. Given any value of R
a minimum can be found: a stable equilibrium always exists.



ii. N large, E< 0: The energy can be decreased without bound by decreasing R . No equilib-
rium can exists and gravitational collapse happens.

The maximum baryon number (and thus mass) that guarantees equilibrium is then determined
by setting E=0 :

Nmax�
�

~c
GmB

�
3/2

� 2� 1057 )Mmax�NmaxmB� 1.5M� (4)

) The order of magnitude of the maximum mass is determined by fundamental constants.

The equililbrium radius associated to Mmax can be estimated by requiring that the instability
happens as matter becomes relativistic

EF &mc2 (5)

with m the particle mass. Using Eq.(4) in Eq.(1) one gets

R. ~
mc

�
~c
GmB

�
1/2

(6)

This gives R� 5� 108 cm for electrons (m=me) and R� 3� 105 cm for neutrons (m=mn).



Chandrasekhar's maximum mass

Another simple argument for the maximum mass.

Assume a polytropic EOS P / �¡. The pressure gradient scales as

P �M¡

R3
) dP

dr
�M¡R¡3¡¡1 (7)

The gravitational force scales as

¡Gm�
r2

�M2R¡5 (8)

Impose equilibrium

dP
dr

=¡GM�
r2

) M¡R¡3¡¡1�M2R¡5 (9)

and

R�M
¡¡2
3¡¡4 (10)

This equation gives the correct scaling of the radius with mass for Newtonian polytropes and
can be proved using the Lane-Emden equation.



For ¡! 4/3 (all electrons are relativistic) the radius tends to zero and no star exists. In fact,
using the Lane-Emden equation it is possible to show that in this limit M becomes independent
on the central density and attains the value

MCh= 5.74
�
A
Z

�
2

M�� 1.435M� (forA/Z =2) (11)

In practice, however, the maximum mass is reached at finite density, and stable WD sequences
end as a consequence of a compositional change in the star. The main responsibile for this is
neutronization: at sufficiently high densities �� 109 g/cm3 inverse �-decay reactions

p+ e¡¡!n+ �e (12)

take place and produce nuclei rich of neutrons, e.g.

26
56Fe ¡! 25

56Mn¡! 24
56Cr (13)

As a consequence, the EOS softens (less pressure support) and the adiabatic index decreases
¡<4/3 leading to a collapse. Neutronization is the same process that in the core of contracting
massive stars (at higher densities) leads to the formation of stable NSs.

Note that WD at densities �� 1010 g/cm3 are also subject to a gravitational instability.



  

With all reserve we advance the view that supernovae represent 
the transition from ordinary stars into neutron stars, which in their 
final stages consist of closely packed neutrons

W.Baade & F.Zwicky (1933)

J.Chadwick (1932) discovers the neutron
m = 1,674 927 351(74) × 10−24 g



  

Core collapse of massive stars

● Core has Γ < 4/3 => collapse
● 8 < M/MSun < 30 => neutron degeneracy pressure and repulsive 

nucleon-nucleon interaction stabilize the core (Γ > 4/3, ρ~1014 g/cm3)
● Core bounce and supernova explosion



Surface grav. field =  1011  x Earth
Escape velocity ~ 1/3 c 

Must be described with general relativity!



  

Pulsars

Bell / Hewish 1968 (Ryle & Hewish Nobel prize 1974)





  

X-ray astronomy

R.Giacconi (Nobel Prize 2002)

● Hot gases at T ~ 1,000,000K emit X-ray
● 1962 Scorpius X-1 

○ Strongest X-ray source together the Sun.
○ Low-Mass-X-ray binary 
○ 1.4M

Sun
 NS + 0.42 star

● 1964 Cygnus X-1
○ High-Mass-X-ray binary 
○ 14.8M

Sun
 BH + 20-40M

Sun
 supergiant star



  

Crab & Vela pulsars



PSR B1913+16
1993 Nobel prize: Hulse & Taylor

Neutron stars in binary systems

[Weisberg&Taylor 2004]

https://arxiv.org/abs/astro-ph/0407149


  



Tolmann-Oppenheimer-Volkoff equations (1939)

Metric (Units: c=G=1):

g=¡e2�(r) dt2+ e2�(r)dr2+ r2d
2 e2�(r)=:
�
1¡ 2m(r)

r

�¡1
> 0 (1)

Perfect fluid matter (Note �= "/c2= " ): T�� =(�+P )u�u� +Pg��

Structure equations valid in the star interior

dm
dr

=4�r2� (2)

dP
dr

=¡�m
r2

�
1+ P

�

��
1+ 4�r3P

m

��
1¡ 2m

r

�¡1
(3)

d�
dr

=¡ 1
�

�
1+ P

�

�¡1dP
dr

(4)

augmented by a (barotropic) EOS

P =P (� ) (5)



Eq.(2) is formally equivalent to the mass-density equation in Newton gravity. The quantity

M =4�
Z
0

R

�(r) r2 dr (6)

is the gravitational mass of the NS (and matches the mass of the exterior Schwarzschild solu-
tion). However the total energy of the spacetime is given by

E=
Z
�


p

T�� t
�n�d3x=4�

Z
0

R

�(r) e�(r) r2 dr >M because e�> 1 (m> 0) (7)

the difference E ¡M :=Eb is interpreted as the binding energy of the star.

The Newtonian limit of Eq.(3) and Eq.(4) is given by P � � and 2m/r� 1.

Eq.(3) describes the hydrostatic equilibrium. The R.H.S. contains three correction factors with
respect to the relative Newtonian equation and they all enhance the �active/effective mass�
between radial shells (Pressure contributes to energy in GR!)

Eq.(4) in the Newtonian limit returns the Newtonian gravitational potential since e2��1+2� ,
and Eq.(1) can be compared to the weak field metric.



How to obtain a solution?

� Prescribe the EOS and the central pressure (or energy density) value at r=0

� Evaluating the proper radius
R
0

r
e�(x)dx� e�(0)r for small radii and requiring smoothness

at r=0 and local flatness implies that e�(0)=1 and m(0)= 0

� Integrate the structure equations using the EOS up to the surface: P (R)= 0

� Match �(r=R) to the Schwarzschild vacuum exterior solution (Birkhoff theorem)

If �>0 and dP /d�>0 , the TOV equations (2-3) guarantee that the pressure profile drecreases
integrating outwards to the surface. Requiring dP /d�> 0 guarantees stability: a fluctuation in
�(r= r0) leading to a decrease of P would otherwise cause the nearby fluid element to move
to r0 leading to a further increase in �(r0) and a runaway instability.

The definition of m(r) implies that 2m(r)/r < 1 for all r. Evaluating the bound at r=R one
obtains that any static, spherically symmetric star must have a radius greater than its Schwarz-
schild radius :

R> 2M (8)

There is no Newtonian analogue of this result because 2GM/(c2R)!0 for c!1 and Eq.(8)
is trivially 1> 0.



Schwarzschild solution (constant density star)

Assuming a constant density star �(r<R)= �0 (and �=0 for r�R), Eq.(2) can be immediately
integrated to m(r)= 4/3�r3�0 and it holds also in the Newtonian limit.

Substituting m(r) in the pressure equation and integrating, one obtains in the Newtonian limit

P (r)= 2
3
��0

2 (R2¡ r2) (9)

that implies the central pressure is

P (0)= 2
3
��0

2R2=
�
�
6

�
1/3
M2/3�0

4/3 (10)

) The Newtonian central pressure is always finite (for any M;R).

This is not true in GR! The pressure solution in GR is

P (r)= �0

�
1¡ 2M

R

�
1/2
¡
�
1¡ 2M

R3
r2

�
1/2�

1¡ 2M

R3
r2

�
1/2
¡ 3

�
1¡ 2M

R

�
1/2

(11)



which gives the central pressure

P (0)= �0
1¡

�
1¡ 2M

R

�
1/2

3
�
1¡ 2M

R

�
1/2
¡ 1

(12)

The pressure is infinite if the denominator is zero, which lead to the Buchdal inequality

R>
9
4
M (13)

) No star can esists in GR with a smaller radius. Note this bound is stronger than Eq.(8).

Buchdal's limit

The Buchdal inequality is actually a general result (for any EOS!).

Under the hypotheses � � 0 and d�/dr � 0 and using the TOV equations it is possible to
establish the bound (see e.g. Wald's book):

m(r)
r

<
2
9
[1¡ 6�r2P (r)+ (1+6�r2P (r))1/2] (14)

which gives immediately Eq.(13) if evaluated at r=R (P (r)= 0).



Maximum NS mass

Analogously to WD, one expects the existance of a maximum mass also for NS. This expectation
is correct, and the precise value of Mmax depends on the NS EOS at high densities. The latter is
not precisely known but under rather general hypothesis it is possible to estimate upper bounds.

Assume the EOS is known below a certain density �0 attaeined at r= r0 and define the core
of the star as the r > r0 region such that �(r)> �0 and the envelop as the r < r0 such that
�(r)< �0: From the TOV equations, the mass of the core m0=m(r0) is certainly larger than

m0�
4
3
�r3�0 (15)

but the ratio m0/r0 is also bound by Eq.(14) evaluated at r= r0. Since Eq.(14) is a decreasing
function of P a simpler (but weaker) inequality is given by taling P0<0 (Buchdal-like inequality)

m0�
4
9
r0 (16)

The two inequalities define the �existance region� of the NS in the plane (r0;m0) and the upper
bound

m0<
16

243��0

r
(17)



Experimentally, the EOS of matter at high densities is reasonably known up to the density
of atomic nuclei, �nuc' 4.6� 1014 g/cm3. Using the �known� EOS up to these densities to
integrate the TOV equations, it is possible to establish that the mass of the envelop contributes
to less than 1% to the total mass of the star. Hence, Eq.(17) evaluated at �nuc is a good
approximation to the maximum mass that apply to any high density EOS:

Mmax.
16

243��nuc

r
� 5M� (18)

) No (spherical) NS can exist above this mass.

The argument can be improved by adding the hypothesis that unknown EOS is causal, i.e. the
speed of sound is less than the speed of light, cs

2= dP /d� < 1 . This way, Roades&Ruffini
(1974) found the improved, yet rather general, bound

Mmax. 3.2
�0
�nuc

r
M� (19)



Exercises

� Prove Buchdal's inequality (Follow Wald's book)

� Derive Eq.(14)

� Reproduce the calculations in Sec.(9.5) of Shapiro&Teukolsky book



  
[Godzieba+ 2020]

● GR & Causality
● No EOS assumptions
● ~2M phenomenological EOS 

https://arxiv.org/abs/2007.10999


  

Necessary condition for stability

Central density

M
as

s



  

NS pulsations

Review: https://link.springer.com/article/10.12942/lrr-1999-2

https://link.springer.com/article/10.12942/lrr-1999-2
https://arxiv.org/abs/0803.3804
https://arxiv.org/abs/0803.3804


  



Observed NS masses

Shapiro time delay: Timing residual as a function of pulsar’s orbital phase



  

Mass-radius

From: https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html


  



  

X-ray measurements

NICER https://heasarc.gsfc.nasa.gov/docs/nicer/

https://heasarc.gsfc.nasa.gov/docs/nicer/


  

Neutron-gas stars



  

NS EOS



  

Black holes

Translation: https://arxiv.org/abs/physics/9905030

Original paper: https://archive.org/details/sitzungsberichte1916deutsch/page/188/mode/2up?view=theater

● Eddington (1924)
● Lemaitre (1933) 
● Finkelstein (1958)  “a perfect unidirectional membrane: 

causal influences can cross it in only one direction”

https://arxiv.org/abs/physics/9905030
https://archive.org/details/sitzungsberichte1916deutsch/page/188/mode/2up?view=theater


  



  



  

Quasar
C348 @ 1.4GHz

● 50s Radio sources of small size
● 60s Optical counterparts w\ High redshift (z ~ 7)
● Very luminous & extra-galactic? (> nuclear fusion, supernovae)
● 1964 Salpeter&Zeldovich: Supermassive BH + accretion disk
● Confirmed by

○ X ray observations of BH (next slide)
○ 1971 Peterson and Gunn: Galaxies containing quasars showed the same 

redshift as the quasars
○ 1979 Walsh,Carswell&Weyman: Grav. Lensing 



  

X-ray astronomy

R.Giacconi (Nobel Prize 2002)

● Hot gases at T ~ 1,000,000K emit X-ray
● 1962 Scorpius X-1 

○ Strongest X-ray source together the Sun.
○ Low-Mass-X-ray binary 
○ 1.4M

Sun
 NS + 0.42 star

● 1964 Cygnus X-1
○ High-Mass-X-ray binary 
○ 14.8M

Sun
 BH + 20-40M

Sun
 supergiant star



  

Sagittarius* A

Mass ~ 4 million MSun ! => Supermassive BH 

Galaxy center; Orbits’ speed ~ 2% c



Weiss,Barish,Thorne Nobel Prize 2017

Since 2015, LIGO-Virgo observations

Gravitational-wave observations



  

Gravitational collapse



Birkhoff's Theorem

Theorem 1. Birkhoff (1923). The Schwarzschild metric is the unique vacuum solution in spher-
ical symmetry.

Sketch of the proof.

i. Any spherically symmetric spacetime (three spacelike rotational Killing vectors) can be foli-
ated in 2-spheres

ii. The most general form of the metric is

g=¡e2�(t;r)dt2 + e2�(t;r)d2r+ r2d 2
 (1)

iii. Use EFE to �eliminate� the time dependence

Corollary 2. Any spherically symmetric vacuum spacetime is static.

Physically, the staticity result can be understood as the absence of gravitational monopole
radiation (analogous to the fact that the Coulomb solution is the only spherically symmetric
solution of Maxwell equations in vacuum).

For example the exterior spacetime of a gravitationally collapsing spherical body is static always
given by the static Schwarzschild metric.



Orbits
Geodesics of photons and particles in the Schwazrschild metric can be analyzed introducing the
constants of motions associated to each Killing vector K� of the spacetime. Exactly as in the
Newtonian problem the motion is on a plane and the relevant equations are

¡T�
dx�

d�
=
�
1¡ 2M

r

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

:=A(r)

t_= const :=E energy (2)

��
dx �

d�
= r2�_ = p�= const=:L angularmomentum (3)

¡s= g��
dx�

d�
dx�

d�
(4)

where s=0; 1 for photons and unit-mass test particles respectively. The key equation resulting
from the ones above is remarkably simple:

r_ +V =E2 (5)

with the potential

VL: =A(r)
�
s+ L2

r2

�
= s¡ s2M

r
+ L2

r2
¡ 2ML2

r3
(6)

This result is analogous to the Newtonian motion in a central potential plus a GR term �r¡3:



  

Orbits



The analysis of the orbits is thus performed by analyzing the stationary points of the potential
(Note r_2=E2¡VL� 0):

0= dVL
dr

= sMr2¡L2r+3ML2
d2VL
dr2

=2sMr¡L2 (7)

Short summary of relevant feats:

Photons (s=0)

� The potential has maximum at r= 3M (for L> 0), called light ring with energy ELR=
V (3M)

p
= L2/(27M2)

p
� The light ring corresponds to an unstable circular orbit

� Incoming photons with E >ELR (E <ELR) continue to r=2M and below (hit a turning
point at a minimum radius and reverse the trajectory)

Particles (s=1)

� The potential has extrema at r�=L2� L2(L2¡ 12M2)
p

with energies E�

� The values r� correspond to an unstable and a stable circular orbit respectively

� r= r+= r¡=6M is the last stable orbit (LSO) or innermost stable circular orbits (ISCO)

� Incoming particles with E >E¡ (E <E+) continue to R= 2M (hit a turning point and
reverse)

� Particles with E¡<E <E+ move on bound orbits (not necessarily closed; precession)



The simplest relativistic two-body problem

Imagine a small but finite mass on a circular orbit around a nonrotating black hole. The emission
of gravitational radiation determines a deviation from geodesic motion. If initially r� 2M , the
emission timescale is much longer than the orbital period and one can approximate the dynamics
as a sequence of circular orbits with progressively smaller radius and higher frequency (adiabatic
approximation). While at some point the adiabatic approximation will break, we can still analyze
the motion and make some predictons/estimates.

The orbital radius will continue decreasing to the LSO. Below that point, no stable circular orbit
is possible and the particle will fall to r=2M and then down to r=0.

) The �two bodies� collide and merge!

The orbital frequency of the LSO is easily found from the angular momentum value at r+=6M :


2= L2

r4
= M

r2(r¡ 3M)
= 6¡3/2M¡2 (8)

or (M
) 2=6¡3/2, the corresponding gravitational frequency is twice this value and provides an
estimate of the merger frequency of the binary. Similarly, the energy of the LSO is

E= r¡ 2M
[r(r¡ 3M)]1/2

= 8
9

r
(9)

Thus, the energy emitted in gravitational waves (per unit mass) is 1¡E� 0.06 .



Exercises

1. Derive the formulas used above to discuss the orbits.

2. Derive the Hamiltonian of particles [Hint: Start from circular orbits]

3. Estimate the gravitational-wave merger frequency of a binary neutron star made of two euqal-
masses neutron stars of 1.4M�. Comment about the result.

4. Estimate the gravitational-wave merger frequency of an equal-mass binary black hole system
of stellar-mass black holes of 30M� and supermassive black holes of 106M�.

5. The correct result of the previous exercise is 2M
'0.36. Can you say why it holds for both
cases (i.e. why there is a trivial mass scale)?



  

Perturbations & Stability



  

Quasi Normal Modes (QNMs)



  



  Signal from NS rotating collapse

https://arxiv.org/abs/1412.5499


  

QNMs in binary black holes remnants

“It was a natural question then to ask: how does one see 
a black hole? So, using a computer, I scattered packets 
of gravitational waves from a black hole and the 
quasinormal modes emerged carrying the signatures of 
the black hole… this was theoretical. I had never 
dreamed that this would take on an aspect of reality 
some day,” 

Prof. Vishveshwara (6 March 1938 – 16 January 2017)
[www.thehindu.com]



  

Origin of QNMs

Review: https://arxiv.org/abs/0905.2975

https://arxiv.org/abs/0905.2975


Perturbations of spherical spacetimes

Consider the perturbation h�� of a spherically symmetric background metric g��
(0) (M=M2�

S2) in some suitable coordinates (e.g. Schwarzschild):

g��= g��
(0)+h�� (1)

Because of the background, the perturbation can be decomposed in scalar Y`m, vectors Za
`mand

tensor Zab
`m spherical harmonics with indexes (`;m)and further separated between even (electric-

type) and odd (magnetic-type) parity according to the behaviour under reflection trhough the
origin: (¡1)` and (¡1)`+1:

h��=h��
(e)+h��

(o) (2)

For example, the decomposition of the even parity part reads (A=0; 1; a=2; 3)

h��
(e)=

0BB@ H0Y`m H1Y`m hA
(e)
Za
`m

00 H2Y`m
00 00 r2KY`m
ab+ r2GZab`m

1CCA (3)

where 
ab is the metric on S2 and the metric coefficients do not carry multipolar indexes for
simplicity (A sum on (`;m) is also understood).



Gauge invariant quantities (under infinitesimal coordinate transformations) can be identified
from the above metric. Of particular importance are the two scalar functions for each multipole
(suffix (`;m) understood):

	(e)(t; r) and 	(o)(t; r) (4)

The perturbed EFE lead to the Regge-Wheleer-Zerilli (RWZ) wave equation for the above scalar
functions (one for each multipole (`;m) that are all decoupled from each other):

	tt¡	xx+V`=S`m (5)

where x is the tortoise coordinate that maps [2M;1) to (¡1;1)

x=r+2M ln
�
r
2M

¡ 1
�

(6)

S`m is a source term from the stress-energy tensor, and V` is a potential determined by the
background metric that for even and odd parity reads, respectively (�:=`(`+1))

V`
(e)=A(r)�(�¡ 2)

2r3+6(�¡ 2)2Mr2+ 36(�¡ 2)M2r+ 72M3

r3 ((�¡ 2)r+6M)2
(7)

V`
(o)=A(r)

�
�
r2
¡ 6M

r3

�
(8)



  



There is no dependence on m due to the spherical symmetry of the background. Among the lin-
earized EFE, Eq.(5) plays a special role because its asymptotic solutions for large r represent the
gravitational-wave degrees of freedom in the spin weighted spherical harmonics decomposition

h+¡ ih�=
G
c4
1
r

X
`=2

X
m=¡`

`
(`+2)!
(`¡ 2)!

r ¡
	`m
(e)(t)+ i	`m

(o)(t)
�¡2Y`m(�; �) (9)

The RWZ problem in vacuum
The initial-boundary value problem with the RWZ requires to chose appropriate initial and
boundary conditions. Because the RWZ potential tends to zero for both x!�1 (horizon and
spatial infinity), the asymptotic solutions at large (tortoise) radii are the solution of the �free�
wave equation on the light cones.

By considering solutions with time dependence 	� e¡i!t (or, equivalently, the Fourier modes),
the RWZ equation can be cast in a form similar to the Schroedinger equation for stationary
states,

d2	~
dx2

+ [!2¡V`]	~ =0 (10)

However, since the RWZ potential is positive, no �bound states� can exists, and the spectrum is
continuous. The physical requirement that no signals can come out from the the horizon, implies
that the boundary condition at x!¡1 is an ingoing wave,

	~ � e¡i!x (x!¡1) (11)



This boundary condition also follows from requiring smoothness. Requiring instead hat no signal
can come in from spatial infinity, implies an outgoing wave for x!+1

	~ � ei!x (x!+1) (12)

With these boundary conditions, Eq.(10) admits solutions for a discrete infinity of complex
frequencies !n with negative imaginary frequencies Im(!n)<0. These damped modes are called
quasi-normal modes (QNMs) appear also in other wave problems with open boundaries, and
generically characterize dissipative systems. Differently from the normal modes of a vibrating
string with �fixed� boundary conditions, QNMs do not form a complete set of eigenfunctions for
the solution.

The presence of damped QNMs in the solutions suggests the stability of Schwatrzschild black
holes under small perturbations (mode stability). The conclusion is correct, although the story
is richer.

Some steps:

� Regge-Wheeler (1957) use a WKB analysis to argue that odd perturbations of the Schwarz-
schild spacetime are stable under the boundary conditions Eq.(11-12)

� Zerilli (1970) obtains the master equation for even parity (same WKB as above applies)

� Vishveshwara (1970) rules out perturbations growing in time because they diverge at the
event horizon, if they fall at infinity.

� Chandrasekhar (1975) finds a map between the odd and even parity perturbations, and proves
the QNMs are �isospectral�



  



� Leaver (1986) formally identifies QNM as pole of a Green function

� Kay & Wald (1987) show that solutions with data of compact support are bounded

� Bachelot and Motet-Bachelot (1993) prove the existance of infinite number of QNMs

Solution by Laplace transform

The Cauchy problem specified by Eq.(5), boundary conditions (like Eq.(11-12)) and initial data
	(0; x) =  (x) and 	t(0; x) =  t(x) with compact support (or sufficiently localized) can be
solved introducing the Laplace transform

�(s; x)=
Z
0

1
e¡st	(t; x)dt (13)

The Laplace transform is defined for positive, real s>0 and can be analytically continued into the
positive complex plane. The equation for � can be immediately found by integrating the RWZ,

�xx ¡(s2+V (x))�=F (s; x) :=¡s (x)¡ t(x) (14)

Two independent solutions f�(s;x) of the homogeneous equation (F �0) determine the unique
Green function of the problem; the solution is

�(s; t)=
Z
¡1

+1
G(s;x; x0)F (s; x0)dx0=

Z
¡1

+1f¡(s; x¡)f+(s; x+)
W (s)

F (s; x0)dx0 (15)



where x�=
max
min (x;x

0)andW (s) is the Wrongskian. The formal solution of the Cauchy problem
is then obtained from the inverse Laplace transform

	(t; x)= 1
2�i

lim
R!1

Z
�¡iR

�+iR

est�(s; x) ds (16)

where � (real) is greater than the real part of all the singularities of � .

The Laplace solution contains both the initial data (in F (s; x)) and the boundary conditions.
The latter are implemented in the choice of the homogeneous solutions f�. The integral in
Eq.(16) can be performed using the residue theorem by chosing an appropriate contour in the
complex plane, as determined by the analytical properties of � .

The RWZ potential decays exponentially for x!¡1 , it reaches a maximum and then decays as
1/x2 for x!1. For the RWZ potential can be proven that (Bachelot&Motet-Bachelot 1993):

� f¡ has poles only at negative real integers

� f+ has a branch cut in the negative real axis due to the r¡2 decay at large radii

The solution is then determined by different contributions

	�
Z
�¡iR

�+iR

(:)=
Z
largehalf¡circle

(:)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
source term

+
X
k
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QNMs

+
Z
branchcut
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Late¡timetails

(17)



  



  

https://arxiv.org/abs/1301.1591


Stability of black hole spacetimes

A fundamental question about exact stationary solutions of Einstein's field equations (EFE) like
Minkowski, Schwarzschild or Kerr is their stability under small perturbations. Rigorous proofs
are very nontrivial and usually built on several results.

A very rough scheme is the following:

� Linear mode stability: within linear perturbation theory one proves that the time evolution
of each mode, say 	`m , is bounded (in some norm) for a suitable class of initial data (say,
with compact support).

� Linear stability: mode stability does not, in general, guarantee that a solution composed of
an infinite sum of modes remains bound. Here one proves that all solutions to the linearised
EFE remain bounded for all times by a suitable norm of their initial data. Mode stability is
a necessary condition to linear stability.

� Nonlinear stability: here one considers the more general Cauchy problem in GR with initial
data �near� Minkowski, Schwarzschild or Kerr, and shows that the solution remains bound.



The question of nonlinear stability of Kerr black holes is still open, although many positive results
are available. An incomplete list is:

� [7] First argument for mode stability of Schwarzschild

� [5] Linear stability of scalar perturbation of Schwarzschild

� [8] Mode stability of Kerr

� [2] Nonlinear stability of Mikowski for asymptotically flat vacuum initial data

� [3] Linear stability of Schwarzschild

� [4] Linear stability of scalar perturbation of nonextremal Kerr BH

� [6] Nonlinear stability of Schwarzschild proven for a class of nontrivial perturbations

� [1] All extremal Kerr BH are unstable to gravitational perturbationalong their event horizon

� [?] Nonlinear stability of Schwarzschild
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NS in binaries: tides



53Annual Reviews of Nuclear and Particle Science 
Radice, SB, Perego [ https://arxiv.org/abs/2002.03863 ]

GERG Collection on Binary Neutron Star mergers
SB [ https://arxiv.org/abs/2002.03863 ]

BNS mergers “(2-body dynamics)^4”

Short-lived NS Long-lived NS

https://arxiv.org/abs/2002.03863
https://arxiv.org/abs/2002.03863
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The gravitational-wave spectrum

Tidal interactions!



Tidal interactions in BNS

(Damour&Nagar 2009a 2009b)

Hamiltonian
(Newtonian limit):

Waveform:

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism at LO

https://arxiv.org/abs/0906.0096
https://arxiv.org/abs/0911.5041


[Hinderer 2007, Damour&Nagar 2009a, Binnington&Poisson 2009] 

Tidal polarizability coefficients



Factorized (resummed) PN waveform [Damour,Iyer,Nagar 2008]
Includes test-mass limit (i.e. particle on Schwarzschild)
Includes post-Newtonian and self-force results
Uses resummation techniques → predictive strong-field regime
Includes tidal interactions (→ BNS) [Damour&Nagar PRD 2010]
Flexible framework → NR informed

[Buonanno&Damour PRD 2000a, 2000b]

Credit: A.Taracchini/AEI

Effective-one-body framework in a nutshell

Credit: L.Barak



Compact binaries dynamics
The motion and radiation of a system of well separated, strongly self-gravitating (�compact�),
bodies can be described by a �matching� approach which consists in splitting the problem into
two (Damour 1983; Damour, Soffel, Xu 1991)

(i) the outer problem where one solves field equations in which the bodies are �skeletonized�
by worldlines endowed with some global characteristics (such as mass, spin or higher-multipole
moments)

(ii) the inner problem where one obtains the near-worldline behavior of the outer solution from
a study of the influence of the other bodies on the structure of the fields in an inner world tube
around each body

This approach can be used to obtain binary black hole dynamics in post-Newtonian (PN) for-
malism and to prove that the bodies' finite-size correction enters at 5PN.

Inner problem

Definition of multipolar tidal coefficients

Consider a static, spherically symmetric star of massM perturbed by a stationary, external grav-
itational quadrupolar field Eij� @i@j�external. The star is expected to respond to the external
field by developing a quadrupole moment Qij . This phenomeon is analogous to the electric
polarizability of a medium that, placed in an external electric field, develops a dipole moment.
Assuming a linear response, an (eletric-type) quadrupolar tidal coefficient is defined as

Qij= �2Eij (1)



A more general definition of �2 (valid also for other other multipoles) and the framework for
the actual calculation can be obtained by the following argument.

In the star local frame and for large radii, the metric coefficient g00 (gravitational potential in
the weak field) can be written as

1¡ g00
2

=¡M
r
+ 3
2
Qij

r3

�
ninj¡ 1

3
�ij

�
+O

�
1
r4

�
+ 1
2
Eijx

ixj+O(r3) (2)

The above expression shows that the tidal coefficient �2 in Eq.(1) can be obtained by matching
the term growing as �r2 to the term falling as �1/r3 of the asymptotics expression of the
(perturbed) metric coefficient.

This procedure can be generalized. In the local frame of the body, define the external gravito-
electric and gravitomagnetic tidal moments

GL : =Gi1: : :i` HL :=Hi1: : :i` (3)

as those multipoles of the perturbed metric that grow as r`. Similarly, the internal mass and
spin multipoles moments

ML SL (4)

are those that decay as r¡(`+1). The multipolar tidal coefficients of the body are then postulated
as those relating the linear response of the internal moments to the external ones

ML= �`GL SL=�`HL (5)



In a linearly perturbed, stationary star spacetime the asymptotics behaviour of the field uniquely
defines these moments (Note: this is different from the vacuum case). In the following only the
gravitoeletric sector is discussed since the magnetic sector is analogous.

Calculation of tidal Love numbers

Consider even parity, stationary perturbations of the TOV metric g��
(0)

g�� = g��
(0)+h��

(e) (6)

The h00
(e) coefficient of the perturbed metric can be expressed in terms of a function H that is

directly related to the logarithm of the enthalpy perturbation. The perturbative equation for H is

H 00+C1H
0+C0

(`)
H =0 (7)

with

C0
(`) = e2�

�
`(`+1)
r2

+4� (�+P )d�
dP

+4� (5�+9P )
�
¡ 4�02

C1 = 2
r
+ e2�

�
2m
r
+4�r (p¡ � )

�



(A similar equation hold for odd parity perturbations). In the star interior, Eq.(7) needs to be
solved numerically together with the background equations and by specifying a EOS. In the star
exterior, �=P =0 and m=M , and the equation reduces to the associated Legendre equation
with variable x= r/M ¡ 1. The general solution can be expressed in terms of the associated
Legendre functions

Houter= aP P̂`2(x)+ aQ Q̂`2(x) (8)

The coefficients aP and aQ are to be determined by the boundary conditions, in particular by
the matching with the interior solution. The ratio a` := aQ/aP can be determined by requiring
the continuity of the logarithmic derivative at the surface

y`(r)=
rH 0(r)
H(r)

(9)

i.e.

y`
inner(R)= y`

outer(R)= (1+xR)
P̂`2
0 (xR)+ a`P̂`2(xR)

Q̂`2
0 (xR)+ a`Q̂`2(xR)

(10)

with xR=R/M ¡ 1=1/C ¡ 1 . Note this is a nontrivial statement to check, since it depends
on the EOS (and the regularity of the matter fields at the surface, e.g. the sound speed) and
on the fact that the perturbed star surface does not coincide with the background star radius.
Solving Eq.(10) for a` gives

a`=¡
P̂`2
0 (xR)+Cy`(R)P̂`2(xR)

Q̂`2
0 (xR)+Cy`(R)Q̂`2(xR)

(11)



This coefficient can be now directly related to the tidal coefficient �` . The asymptotic behaviour
of the outer solution is determined by

P̂`2(x)�
�
r
M

�
`+1

Q̂`2�
�
M
r

�
`+1

(12)

such that the growing and falling part of the perturbation are

¡
h00
(e)�growing� aP �

r
M

�
`+1

Y`m
¡
h00
(e)�falling� aP �

r
M

�¡(`+1)
Y`m (13)

The matching gives (reintroducing the constants G and c)

(2`¡ 1)!!G�`= a`

�
GM
c2

�
2`+1

(14)

G�` has dimension of [length]2`+1. The tidal Love numbers are defined as the dimensionless
combination

k` : =
1
2
a`C

2`+1=¡1
2
C2`+1 P̂`2

0 (R/M ¡ 1)¡Cy` (R)P̂`2(R/M ¡ 1)
Q̂`2
0 (R/M ¡ 1)+Cy`(R)Q̂`2(R/M ¡ 1)

(15)



The tidal polarizability parameters of a star often employed in gravitational-wave astronomy are
defined as

�` : =
2k`

(2`¡ 1)!!C2`+1
(16)

Outer problem

Effective action

Up to 5PN order (O(v/c)10) the motion of two body compact bodies of mass MA A=1; 2 is
described by the effective action

S=
Z

R
16�G

¡
X
A=1

2 Z
MAd�A (17)

where an �apportune regularization� must be introduced to deal with the point-mass source term
in the EFE. Note that the calculation of the 5PN dynamics is not yet completed: for nonspinning
bodies, the conservative dynamics is fully known at 4PN, while the waveform at 3.5PN.

Finite-size effects enter at 5PN and the action needs to be augment with the term

Snonminimal=
X
A;`

�
1
2
�`
`!

Z
(GLA)2 d�A+

1
2

`
(`+1)

�`
A

`!
1
c

Z
(HL

A)2d�A

�
(18)



Tidal Lagrangian at leading order

At leading order the tidal Lagrangian for body A is given by

LT
A� �2 (GLA)2 (19)

where the external tidal moment is calculated on the worldline zA
a of the body as

GL
A� @

L
U external= @L

�
GMB

jrABj

�
(20)

with rAB= jzAa¡zBa j . The calculation uses the formalism of symmetric trace-free (STF) tensors
for multipolar expansions, and in particular the expression

@L
A

�
1
rAB

�
=(¡1)`(2`¡ 1)!! n̂

L

rAB
`+1

(21)

where n̂L is the STF projection of the of the unit vectors na=(zAa¡ zBa)/rAB . The result is

LT
A�+

X
`

(2`¡ 1)!!
2

�A
(GMB)2

rAB
2`+2

=+
X
`

k`
AG (MB)2RA

2`+1

rAB
2`+2

(22)

The interaction is proportional to the Love numbers (or to the tidal polarizability parameters
�`A), it is attractive, and it is short-range, e.g. the first term scales as �1/r6 .



Was this useful? Quick self-check:

� What are the two main characteristics of compact objects?

� What is compactness? Make a table with order of magnitude values for mass, radius, com-
pactness, average density for WD, NS, BH (without books/googling)

� What is the origin of pressure support in WD? What is the order of magnitude of the critical
density? What are the values of the adiabatic index above/below the critical density?

� What is the physical origin of the Chandrasekhar mass? Can you provide an order of mag-
nitude argument for the existance of MCh?

� What is the Buchdal limit?

� What is the maximum NS mass Mmax? Can you give an upper bound?

� What is the difference between the WD and the NS EOS?

� What is a black hole? Why and How black holes form from stars?

� What is the LSO? And how can you estimate the merger frequency of black hole binaries?

� What is the RWZ equation? What boundary conditions are usually imposed?

� Are black holes stable? How can one formulate the stability problem?

� What are the Love numbers and the tidalpolarizability parameters? How can they be com-
puted?

Now you can do the proposed exercises and check the references mentioned in the lectures!


