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Topics

e Compact objects & compactness

e WD: Degenerate Fermi gas

e WD: Chandrasekhar mass

e NS: TOV equations & Buchdal limit

e NS: Maximum mass & Mass-radius diagram

e NS: Pulsations & stability

e NS: Equation of State

e BH: Schwarzschild solution and maximal extension
e BH: Birkhoff theorem & Schwarzschild’s Orbits

e BH: the simpest GR 2-body problem

e BH: Gravitational collapse

e BH: Perturbation, Stability & Quasi-Normal-Modes
e BH (in binaries): Ringdown

e NS (in binaries): Love number, tidal polarizability & interactions
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Compact objects are born when normal stars die

Stellar evolution
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Compact objects

White Dwarf Neutron Star Black hole
Progenitor Mass (M) 0.1 -8 8— 25 > 25
End stage of star Red giant Supernova Supernova
Mass M (M) 0.1—-1.4 1-3 >3
Radius R (km) 10* ~ Earth 10 Rsen
Density p (kg m™?) 10910 1018 :
Compactness param. 10— 02—-04 1

Counterbal. of self-grav.

electron deg. press.

neutron deg. press.




Compact objects

Extreme matter: Density

Extreme gravity: Surface gravity

e “cold” : do not burn fuel, no thermal pressure (degenerate matter)

« “small” : significantly smaller radii than stars with same masses



WD: Sirius B observation

Binary system

D ~ 8.6 light-years from Earth
Orbital period ~ 50 yrs

Sirius Amass ~1 M,

Luminosity L ~ 0.06 L,

“white” spectrum - T ~ 25,000k
Radius R ~ 102 R,

[HST image from wikipedia]
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W.S.Adams (1925) Sirius B redshift measurement z~20km/s
[ ~89+/-19 km/s Greenstein+(1971), ~80+/-5 HST ]

Prof.Adams has killed two birds with one stone; he has
carried out a new test of Einstein’s theory of relativity and
he has confirmed our suspicion that matter 2000 times
denser then platinum is not only possible, but it is
actually present in the Universe

A.Eddington (1925)

It seems likely that the ordinary failure of the gas laws
due to finite sizes of molecules will occur at these high
densities, and | do not suppose that the white dwarfs
behave like perfect gas

A.Eddington (1926)

R.H.Fowler (1926) applied the (brand-new) Fermi-Dirac statistic (Dirac 1926):
WD can be supported from gravitational collapse by electron degeneracy pressure




Degenerate Fermion gas EOS: definitions

Number density in phase space (# particles per unit phase space):

dN (25s+1)
d3x d3p - 3 f(z,p)

prob.density fun.

L dN 3
" _/ d3xd3p p

Energy density (E2=pc? +mc?) :

o dN 3
5.—/ d3xd3pEd P

Number density:

(Isotropic) Pressure:

1 dN p?c? 3
P'_§/ d3xd3p E &'

At equilibrium the prob.density function is the Fermi-Dirac distribution:

1 : 1
fzeﬁ(E—u)+1 ,  with [i=——

kT



Degenerate Fermion gas EOS: Ideal electrons gas

Limits of the Fermi-Dirac

e high-temp/low-density (F < kpT): f(E)~ef F-M« 1

e low-temp/high-density: f(F)=0(Er — E) with E_:=x(0) the Fermi energy

Work in the low-temp limit, compute number density, pressure & energy ( [ d3p:47rf p?dp):

8T
ER

Ne = o1 ST (mec)?x3  with z:= PE (6)

27
pidp = 3h3 pF_3h3 Me C

S pr p2 C2 Q7 T y4 e
Pe:— 2d 4 5 duy— e .
3h3/0 (p2c2+m2c4)1/2p P=3735MeC /0 (1—y2)1/2 y=—73" o (x) (7)

with
0(0) =] 2 (422 a1 ) nfot (1422 8)
Similarly:
Ee= W;_fgcf) X () 9)
¥ (2) = == [2(1 + 22)1/2 (14 22%) — In [z + (1 + 22)1/2] (10)

8T



Degenerate electron gas EOS: mass density & polytropic limits

In a system with electrons and ions, the charge of each electron is neutralized by a proton which
is turn is accopanied by one or more neutrons in the nucleous. The rest-mass density of the gas
is dominated by the mass of the nucleons since m. << my ; indicating as A/ Z the number of
nucleons per electron,

A
po = Z N Mg %neme (11)
species, s
Total mass density:
p=po+ee/c’ = po (12)

The EOS is parametrically given by Eq.(6),(7),(9) and (11) as functions of .

For example, by combining Eq.(11) with Eq.(6) the Fermi parameter (momentum) is

__h ( 3 Z p >1/3 (13)

mec\ 8m A my

and the other quantities can be expressed as P.(p) and €. (p) .
Note: A/Z ~2 for He, C, O.



Define the critical density

1 A/ mec\3 A
pc:zs#z( h ) ~ 7 10%g/ e’

o Low density limit, p < po: non-relativistic electrons cpr < medc? or v < 1

1 5 1 3
152" X (7)o

¢ () ~

e High density limit, p > po: relativistic electrons x> 1

1 4 1 4
12727 X(@) ~ s

¢ () ~

In these limits the EOS can be written in the form
P. = Kpg Ee = K PQ
with (different) constants K, I" and k:

e pLp.:1'=5/3 K:(Si)2/3 h? ( z )5/3N1013<A£)5/3[CGS]

5me \ Amp

e p>p.: I'=4/3 K:(?S)yg%h(mzmv)‘l/z”mmw (%)4/3 [CGS]

| w

K=3

(14)

(15)

(16)

(17)



Degenerate neutron gas EOS

The above derivation is valid for any gas made of non-interacting fermions, by appropriately
substituting the value of the particle mass. For example, a gas of non-interacting neutrons

(1., / me ~10%) has a critical density of

1 MnC\3
pc::37T2( = )rv6><1015g/c1rn3

and it is described by a polytropic EOS with

32/3 14/3 2

5 E

e p<p.:I'=5/3 K= ~10° [CGS]

o p>p.: T=4/3 K=207he  q4g1510GS]

4 A

(18)

In this case the mass density p = pg+¢c,/c?~¢e,/c? is dominated by the neutron’s energy

density in the relativistic limit.



Fate of a star with “no fuel”’

Without nuclear burning a star decreases its total energy E because of radiation emission from
the surface. The energy source in this phase is the gravitational energy W~ —G M /R. The
virial theorem implies that the star contracts

AE<0=AR<0 (19)

For a Maxwell-Boltzmann ideal gas P oc kg1’ , the gravitational energy is proportional to the
average temperature of the star:

R R R
—W:47T/ Gm(r)p(r)erT:M d—]Dr3dr:—127T/ Pr2droc T (20)
0 r o dr 0

(The second equality uses the hydrostatic equilibrium equation, and the third integrates by part).
This implies that, as the radius decreases, the temperature increases as

- M
T~— 21
- (1)

At the same time the average density increases as

_ M
P~h3 (22)

Under these conditions a gas of M ~ M, becomes degenerate and the star cannot contract for
ever: Pauli’'s exclusion principle becomes relevant and the Fermi-Diract statistics must be applied.



Indeed, the typical momentum of the electrons in a Maxwell-Boltzmann gas is estimated as

_ M\/?

while their separation is

The volume in the phase space is thus

3
M2 R
(ApeAqe)3~< e M1/3> -~ (R1/2M1/6)3

and with all the factors ...

M 1/6 R 1/2 3 M 1/2
3 26 " v ~h3 2~
(BreAd) 40[10 (M@> (R@> [CGS]] " (M@> (

(23)

(24)

(25)

R 3/2
3 X 10_2R@> (26)

Hence, the electron degeneracy pressure starts to support a star of a solar mass that contracts

to ~3 X 10_2R@



Exercises

e Derive yourself all the discussed results about the degenerate electron gas
e Use the virial theorem to argue that a star without fuel must contract

e Estimate the gravitational redshift of a photon emitted from the source of a WD



Chandrasekhar ... has shown that a star of a mass greater than a
certain limit remains a perfect gas ...

The star has to go on radiating and radiating and contracting and
contracting until, | suppose, it gets down to a few km radius, when
gravity becomes strong enough to hold in the radiation, and the star
can at last find peace. ... | think there should be a law of Nature to
prevent a star from behaving in this absurd way!

A.Eddington (1935)

It is clear from this statement that Eddington fully realized, already
in 1935, that given the existence of an upper limit to the mass of
degenerate configurations, one must contemplate the possibility of
gravitational collapse leading to the formation of what we now call
black holes. But he was unwilling to accept a conclusion that he so
presciently drew.

S.Chandrasekhar (1982)




Landau’s argument (1932)

Consider NV fermions in a star of radius R, so that the number density isn=N/R>, Ag~(1/

1/3

n)? and, from the Heisemberg uncertainty principle, Ap~ hn'/? . The Fermi energy of the gas

in the relativistic regime is

1/3
Epwhcnl/gwﬁc% (1)

The mass of the star is dominated by the baryons M ~ Nmpg and the gravitational energy per
Fermion is
~GMmp _ GmiN

W~ 7 5 (2)

Define the equilibrium state as the minimum of the total energy

FeNY/3 B GmpN

F=F —
r+ W 7 i (3)

There are two cases

i. N small, £ > 0: The energy can be decreased by increasing R (decreasing Er). When W
dominates, I/ becomes negative and then tends to zero for large R. Given any value of R
a minimum can be found: a stable equilibrium always exists.



ii. NN large, E < 0: The energy can be decreased without bound by decreasing 2. No equilib-
rium can exists and gravitational collapse happens.

The maximum baryon number (and thus mass) that guarantees equilibrium is then determined
by setting £ =0 :

hC 3/2
Niax ~ ( ) ~2x10°7 = Myax ~ Nypax MpB ~ 1.5 Mg (4)
GmB

= The order of magnitude of the maximum mass is determined by fundamental constants.

The equililbrium radius associated to M.« can be estimated by requiring that the instability
happens as matter becomes relativistic

Er>mc? (5)

with m the particle mass. Using Eq.(4) in Eq.(1) one gets

R< h( he )1/2 (6)

mec\ Gmp

This gives R~ 5 x 10% cm for electrons (m =m,) and R~ 3 x 10° cm for neutrons (m = m,,).



Chandrasekhar’s maximum mass

Another simple argument for the maximum mass.

Assume a polytropic EOS P o< p'. The pressure gradient scales as

M* dP
P~ —NMF —3I'—1
R37 - dr 1

The gravitational force scales as

Gmp _
. TQ NMQR 5)
Impose equilibrium
apr G Mp I p—3T—1 2 p—5
p M" R ~M*R
and
R Mo 1

This equation gives the correct scaling of the radius with mass for Newtonian
can be proved using the Lane-Emden equation.

(10)

polytropes and



For I' — 4 /3 (all electrons are relativistic) the radius tends to zero and no star exists. In fact,
using the Lane-Emden equation it is possible to show that in this limit M/ becomes independent
on the central density and attains the value

2
Mcn=5.74 (%) Mg ~1.435 Mg, (for A Z =2) (11)

In practice, however, the maximum mass is reached at finite density, and stable WD sequences
end as a consequence of a compositional change in the star. The main responsibile for this is
neutronization: at sufficiently high densities p~ 10° g /cm? inverse (3-decay reactions

p+e  —n+r, (12)

take place and produce nuclei rich of neutrons, e.g.
50Fe — 50Mn — 55Cr (13)
As a consequence, the EOS softens (less pressure support) and the adiabatic index decreases

[' <4 /3 leading to a collapse. Neutronization is the same process that in the core of contracting
massive stars (at higher densities) leads to the formation of stable NSs.

Note that WD at densities p~ 10" g /cm? are also subject to a gravitational instability.



J.Chadwick (1932) discovers the neutron
m = 1,674 927 351(74) x 1072*g

With all reserve we advance the view that supernovae represent
the transition from ordinary stars into neutron stars, which in their

final stages consist of closely packed neutrons

W.Baade & F.Zwicky (1933)




Core collapse of massive stars

ONi — “®Fe + 2¢™ + 21,

AZ + e — AZ-1) + v.

"°Fe + v — 13He + 4n

* Core has I < 4/3 => collapse

* 8 < M/Mg,, < 30 => neutron degeneracy pressure and repulsive N S
nucleon-nucleon interaction stabilize the core (I > 4/3, p~1014 g/cm3) A

* Core bounce and supernova explosion

M. (R Rns \ M, >/ Rns \ L ;
AW ~ —Q core core ~_QG core ~ 1073 ol TR
<1-4 Mg 109 cm 106 cm 1.4 Mg, 106 cm creg o .




escape velocity

Surface grav. field = 10 x Earth
Escape velocity ~ 1/3 ¢

orbital velocity

Must be described with general relativity!



Bell / Hewish 1968 (Ryle & Hewish Nobel prize 1974)

Pulsars
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Rotating Neutron Stars as the Origin of the

Pulsating Radio Sources

by

T. GOLD

Center for Radiophysics and Space Research,
Corpell University,
Ithaca, New York

The constancy of frequency in the recently discovered pulsed radio
sources can be accounted for by the rotation of a neutron star.
Because of the strong magnetic fields and high rotation speeds,
relativistic velocities will be set up in any plasma in the surrounding
magnetosphere, leading to radiation in the pattern of a rotating
beacon.

THE case that neutron stars are responsible for the periodicities as those obeerved, ranging from 1-33 to 0-25 s,
recently discovered pulsating radio sources'-* appears to  Higher harmonics of a lower fundamental frequency that
be a strong one. No other theoretically known astron- may he possessed by & white dwarf have boen mentioned ;
omical object would possess such short and aceurate but the detailed fine structure of several short pulses

© 1968 Nature Publishing Group




JOY DIVISION

UNKNOWN PLEASURES




X-ray astronomy

e Hotgases at T ~ 1,000,000K emit X-ray
e 1962 Scorpius X-1
o Strongest X-ray source together the Sun.
o Low-Mass-X-ray binary
o 1.4M_ NS +0.42 star
e 1964 Cygnus X-1
o High-Mass-X-ray binary
o 14.8M_,  BH + 20-40M_ supergiant star

CYGNUS X-1

R.Giacconi (Nobel Prize 2002)

ENERGY (kev)




Crab & Vela pulsars

Pulsating Radio Sources

near the Crab Nebula Vorume 22, NumsEr 7 PHYSICAL REVIEW LETTERS 17 FEBRUARY 1969
Abstract. Two new pulsating radio CRAE NEBULA PULSAR NPO527
sources, designated NP 0527 and NP Edward C. Reifenstein, III, William D. Brundage, and David H. Staelin*
National Radio Astronomy Observatory,f Green Bank, West Virginia
0532, were found near the Crab Nebula (Received 30 December 1968)

and could be coincident with it. Both

Position measurements of the Crab nebula pulsar NPO527 made with a split-beam an~

sources are sporadic, and no periodici- tenna yield the position (1950) & = 05126™105 + 405, 5=22°0’ +30’. Thus NPO527 lies 1.2°
. . . 3 from the pulsar NP0532, which is located at the nebula. The proximity and similar dis-

ties are evident. The p ulse d;sp ersions persion of these two pulsars suggest that they may have had a common origin in the su-

indicate that 1.58 = 0.03 and 1.74 = pernova explosion of A.D. 1054 and hence that NPO527 is moving with a velocity of

0.02 x 10%° T per square cen ti- ~0.15¢, a hypothesis which could be tested directly by proper motion measurements.

meter lie in the direction of NP 0527
and NP 0532, respectively.

A Pulsar Supernova Association?

by

M. I. LARGE

A. E. VAUGHAN A pulsar with a very short period (0-089 s) has been discovered
B. Y. MILLS at the position of a suspected supernova remnant, raising several

) interesting consequences.
Cornell-Sydney University Astronomy Centre,

School of Physics,
University of Sydney
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1993 Nobel prize: Hulse & Taylor



https://arxiv.org/abs/astro-ph/0407149

FEBRUARY 15, 1939 PHYSICAL REVIEW VOLUME 55

On Massive Neutron Cores

J. R. Orrexnemer aso G M. VoLgorr
Departiment of Physics, Universily of California, Berkeley, Caltfornin
(Received January 3, 1939)

It has been suggested that, when the pressure within stellar matter becomes high enough,
a new phase consisting of neutrons will be formed. In this paper we study the gravitational
equilibrium of masses of neutrons, using the equation of state for a cold Fermi gas, and geneml
relativity, For masses under §© only one equilibrium solution exists, which is approximately
described by the nonrelativistic Fermi equation of state and Newtonian gravitational theory.
For masses 10 <m < 1@ two solutions exist, one stable and quasi-Newtonian, one more
:;(mllenﬁed, and unstable, For masses greater than 'IEL} there are no static tqll'lﬁhril.lm solutions,
These results are qualitatively confirmed by comparison with suitably chosen special cases
of the unulyﬁc solutions recently discovered lly Tolman, A discussion of the pl‘ulm]!lc elffect
of deviations from the Fermi cquation of state suggests that actual stellar matter after the
exhaustion of thermonuclear sources of energy will, if massive enough, contract indefinitely,
although more and more slowly, never reaching true equilibrium.
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Figure 9.1 Cravitational mass versus central density for the HW (1958) and OV (1939) equations of
state. The stable white dwarf and neutron star branches of the HW curve are designated by a heawy
solied line.



Tolmann-Oppenheimer-Volkoff equations (1939)

Metric (Units: c=G =1):

g= —e29() q¢2 1 22 (M) g2 4 2402 P2 (1) —. (1 B 272(7“)

Perfect fluid matter (Note p=c/c?*=¢): Top=(p+ Pluausg + Pgap
Structure equations valid in the star interior

—CCZZT =47r?p

3 —1
aP__pm 1+£ 1+47TTP 1_2m
dr r2 Ji m r

—1
) -0



Eq.(2) is formally equivalent to the mass-density equation in Newton gravity. The quantity

R
M:47T/O p(r) r?dr (6)

is the gravitational mass of the NS (and matches the mass of the exterior Schwarzschild solu-
tion). However the total energy of the spacetime is given by

R
E:/ VY Tap tan5d3:c:47T/ p(r) e r2dr > M because e*>1(m >0) (7)
. 0

the difference ¥ — M =: E, is interpreted as the binding energy of the star.
The Newtonian limit of Eq.(3) and Eq.(4) is given by P < p and 2m /r < 1.

Eq.(3) describes the hydrostatic equilibrium. The R.H.S. contains three correction factors with
respect to the relative Newtonian equation and they all enhance the “active/effective mass”
between radial shells (Pressure contributes to energy in GR!)

Eq.(4) in the Newtonian limit returns the Newtonian gravitational potential since ¢?? ~1+2¢,
and Eq.(1) can be compared to the weak field metric.



How to obtain a solution?

e Prescribe the EOS and the central pressure (or energy density) value at =0

A (0)

e Evaluating the proper radius fgeA(x)da:%e r for small radii and requiring smoothness

at 7 =0 and local flatness implies that e*(9) =1 and m(0) =0
e Integrate the structure equations using the EOS up to the surface: P(R) =0
e Match ¢(r = R) to the Schwarzschild vacuum exterior solution (Birkhoff theorem)

If p>0and dP/dp>0,the TOV equations (2-3) guarantee that the pressure profile drecreases
integrating outwards to the surface. Requiring d P /dp > 0 guarantees stability: a fluctuation in
p(r=rg) leading to a decrease of P would otherwise cause the nearby fluid element to move
to 7 leading to a further increase in p(ry) and a runaway instability.

The definition of m(r) implies that 2m(r) /r < 1for all . Evaluating the bound at » = R one
obtains that any static, spherically symmetric star must have a radius greater than its Schwarz-
schild radius :

R>2M (8)

There is no Newtonian analogue of this result because 2GM / (c?R) —0 for ¢ — oo and Eq.(8)
is trivially 1 > 0.



Schwarzschild solution (constant density star)

Assuming a constant density star p(r < R)= po (and p=0 for r > R), Eq.(2) can be immediately

integrated to m(r) =4 /37r?pg and it holds also in the Newtonian limit.

Substituting m(r) in the pressure equation and integrating, one obtains in the Newtonian limit

that implies the central pressure is

2 T\1/3
P(0) = gmpi? = () Mg

= The Newtonian central pressure is always finite (for any M, R).

This is not true in GR! The pressure solution in GR is

(2" (1)
R R3

oM 1/2 onm\1/2
(1-32) " =3(1- %)

P(r)= po

(9)

(10)

(11)



which gives the central pressure

1 (1 _ ﬁ)l/ ’
R
P(O) = Po oA \1/2 (12)
3(1 - T) 1
The pressure is infinite if the denominator is zero, which lead to the Buchdal inequality
9
R> ZM (13)

= No star can esists in GR with a smaller radius. Note this bound is stronger than Eq.(8).

Buchdal’s limit

The Buchdal inequality is actually a general result (for any EOS!).

Under the hypotheses p >0 and dp/dr <0 and using the TOV equations it is possible to
establish the bound (see e.g. Wald's book):

mir) _2

. 9[1—67rr2P(7“)+(1+67rr2P(r))1/2] (14)

which gives immediately Eq.(13) if evaluated at r =R (P(r)=0).



Maximum NS mass

Analogously to WD, one expects the existance of a maximum mass also for NS. This expectation
is correct, and the precise value of M, .. depends on the NS EOS at high densities. The latter is
not precisely known but under rather general hypothesis it is possible to estimate upper bounds.

Assume the EOS is known below a certain density pg attaeined at r =rgand define the core
of the star as the r > r( region such that p(7) > po and the envelop as the » <7y such that
p(r) < po. From the TOV equations, the mass of the core mg=m(rg) is certainly larger than

mo > %m’ﬁpo (15)

but the ratio m 7 is also bound by Eq.(14) evaluated at r =1¢. Since Eq.(14) is a decreasing
function of P a simpler (but weaker) inequality is given by taling Py <0 (Buchdal-like inequality)

mo S%To (16)

The two inequalities define the “existance region” of the NS in the plane (7, mg) and the upper
bound

16

2437Tp0 (17)

mo <



Experimentally, the EOS of matter at high densities is reasonably known up to the density
of atomic nuclei, pnuc~4.6 x 101 g /cm?. Using the “known” EOS up to these densities to
integrate the TOV equations, it is possible to establish that the mass of the envelop contributes
to less than 1% to the total mass of the star. Hence, Eq.(17) evaluated at p,yuc is a good
approximation to the maximum mass that apply to any high density EOS:

16
Mmaxg WNSMQ (18)

= No (spherical) NS can exist above this mass.

The argument can be improved by adding the hypothesis that unknown EOS is causal, i.e. the
speed of sound is less than the speed of light, cgzdP/d,o < 1 . This way, Roades&Ruffini
(1974) found the improved, yet rather general, bound

Momax <3.2 /22 M (19)

pHUC




Exercises

e Prove Buchdal's inequality (Follow Wald's book)
e Derive Eq.(14)

e Reproduce the calculations in Sec.(9.5) of Shapiro& Teukolsky book



* GR & Causality
* No EOS assumptions
 ~2M phenomenological EOS

In general. we find that the upper bound on My, can be
very well approximated as

Muax < (M) + BIM)Rw ., (2)

where Ry is the radius in km of a NS of gravitational mass
M and
a=045M; - 1.22M,

(3)
B=-0.051M,km ' +0.34 Mkm™".

10.5 11 11.5 12 12.5

[Godzieba+ 2020]



https://arxiv.org/abs/2007.10999

Necessary condition for stability
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Mass
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Central density



NS pulsations

THE DYNAMICAL INSTABILITY OF GASEOUS MASSES APPROACHING
THE SCHWARZSCHILD LIMIT IN GENERAL RELATIVITY

S. CHANDRASEKHAR
University of Chicago
Received May 11, 1964

ABSTRACT

In this paper the theory of the infinitesimal, baryon-number conserving, adiabatic, radial oscillations of
a gas sphere is developed in the framework of general relativity. A vanational base for determining the
characteristic frequencies of oscillation is established. It provides a convenient method for obtaining
sufficient conditions for the occurrence of dynamical instability. The principal result of the analysis is the
demonstration that the Newtonian lower limit §, for the ratioof the specific heats , for insuring dynam-
ical stability is increased by effects ansing from general relativity; indeed, is increased to an extent that,
so long as  is finite, dynamical instability will intervene before a mass contracts to the limiting radius
(22.25 GM /¢*) compatible with hydrostatic equilibrium, Moreover, if ¥ should exceed § only by a small
amount, then dynamical instability will occur if the mass should contract to the radius

Re=-——_ 22 (v— ),

where K is a constant depending, principally, on the density distribution in the configuration, The value
of the constant K is explicitly evaluated for the homogeneous sphere of constant energy density and the
polytropes of indices # = 1, 2, and 3,

Fluid mode displacement:

En (1) ~ ay(r)etwnt

Stability: w? < 0

dM 2 _
i =0—w;, =0

THE ASTROPHYSICAL JOURNAL, Vol. 149, September 1967

NON-RADIAL PULSATION OF GENERAL-RELATIVISTIC STELLAR
MODELS. 1. ANALYTIC ANALYSIS FOR [ > 2*

Kip S. THORNET
California Institute of Technology, Pasadena

AND

AvrroNso CAMPOLATTARO
University of California, Irvine
Received February 24, 1967

ABSTRACT

The theory of small, adiabatic, non-radial perturbations of a star away from hydrostatic equilibrium
is developed within the framework of gmeraﬁe[ativity‘ The unperturbed equilibrium configuration is
an arbitrary, non-rotating, general-relativistic stellar model. The departures from equilibrium are ana-
lyzed into tensorial spherical harmonics and then into complex normal modes with various mixtures
of incoming and outgoing gravitational waves. A discussion is given of the expansion of real, physical
pulsations with purely outgoing gravitational radiation in terms of the complex normal modes. Criteria
are developed for stability against non-radial pulsations; and methods are devised for computing numeri-
cally the pulsation frequencies, eigenfunctions, and gravitational-radiation damping times of the stable,
real quasi-normal modes of pulsation.
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Towards gravitational wave asteroseismology
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Nils Andersson ™~ and Kostas D. Kokkotas™
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Figure 1. The numerically obtained f mode frequencies plotted as functions
of the mean stellar density (M and R are in km and wy . In kHz).

Figure 7. An illustration of how accurately the radius and the mass of a star

can be inferred from detected mode data and our empirical relations.
© 1998 RAS, MNRAS 299, 10591068
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Observed NS masses

A two-solar-mass neutron star measured using

" Black widow pulsar .

Lattimer JM. 2012.
Annu. Rev. Nucl. Part.
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Shapiro delay

P. B. Demorest', T. Pennucci’, S. M. Ransom', M. S. E. Roberts®

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron star matter
equation of state and rule out theoretical models of their composi-
tion'?. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components® ©. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body’. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision®”. Here we present radio timing observations of the binary
millisecond pulsar J1614-2230"*"" that show a strong Shapiro delay
signature. We calculate the pulsar mass to be (1.97 + 0.04) M, which
rules out almost all currently proposed® = hyperon or boson con-
densate equations of state (Mg, solar mass). Quark matter can sup-
porta star this massive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks'”.

& J. W. T. Hessels™*

A Massive Pulsar in a Compact
Relativistic Binary

John Antoniadis,™ Paulo C. C. Freire," Norbert Wex," Thomas M. Tauris,”" Ryan S. Lynch,’
Marten H. van Kerkwijk," Michael Kramer,»* Cees Bassa,” Vik S. Dhillon,® Thomas Driebe,”
Jason W. T. Hessels,® Victoria M. Kaspi,® Vladislav I. Kondratiev,®*® Norbert Langer,*
Thomas R. Marsh,™* Maura A. McLaughlin,12 Timothy T. Pennucci,”® Scott M. Ransom,™*
Ingrid H. Stairs,® Joeri van Leeuwen,®? Joris P. W. Verbiest,* David G. Whelan**

Many physically motivated extensions to general relativity (GR) predict substantial deviations in
the properties of spacetime surrounding massive neutron stars. We report the measurement of

a 2.01 + 0.04 solar mass (M.) pulsar in a 2.46-hour orbit with a 0.172 + 0.003 M. white dwarf.
The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously
untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR,
supporting its validity even for the extreme conditions present in the system. The resulting
constraints on deviations support the use of GR-based templates for ground-based gravitational
wave detectors. Additionally, the system strengthens recent constraints on the properties of
dense matter and provides insight to binary stellar astrophysics and pulsar recycling.
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Shapiro time delay: Timing residual as a function of pulsar’s orbital phase
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GW170817: Measurements of Neutron Star Radii and Equation of State

The LIGO Scientific Collaboration and The Virgo Collaboration
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FIG. 3. Marginalized posterior for the mass m and areal radius f? of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97 My, (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in gray. The lines in
the top left denote the Schwarzschild BH (2 = 2m) and Buchdahl (2 = %m /4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds

of the 90% credible intervals.




X-ray measurements
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FIG. 1: Pressure (top) and the adiabatic exponent (bottom)
as a function of the total energy density for various EOS.
Notice here we are using cgs units.



Black holes

Setzt mam dicse Worte der Funktionen f im Ausdimuck (0} des
Linienclements ein und kebrt zugleich mu gewihnlichen Polarkoordi-
niuten zuriick, so ergibt sich das Linienelement, welches die
strenge Losung des Ersstmisschen Problems bildet:
dR*
—allt

Scawanzsonno: Uber das Gravitationsfeld eines Massenpunkies 189

s = (1 =/ R)d1"— : — RS+ sin' Sdg"), R= 1+ (14)

Uber das Gravitationsfeld eines Massenpunktes e o . ] !
: Dasselbe enthale die eine Konstante 2, welche von der Grille der im
ﬂsﬂh Iiﬁ]f EmSTEmschﬂn Thﬂ[]r]ﬂ_ Nullpunki |u'.ﬁn.+llil'!_|rn Masse ahldingt.

Von K. ScuwarzscHinu.

{Vorgelegt am 13, Januar 1916 [s. oben S, 42])

Original paper: https://archive.org/details/sitzungsberichte1916deutsch/page/188/mode/2up?view=theater
Translation: https://arxiv.org/abs/physics/9905030

PHVYSEICAL REVIEW VOLUMT 130, NUMBER 4 MAY 15, 1958

lywood
are dying mr:?':‘

Past-Future Asymmetry of the Gravitational Field of a Point Particle P 2boue 107 of

Davip FINkRLETRmN
Stevens Institute of Technology, Hoboken, Neme Jersey, ond New Vork University, Now Vork, New York

° Ed d I n g to n (1 9 24) (Received January 9, 1938)

The soalytic extension of the Schwarzschild exterior solution is glven in a elosed form valid throughout
emply space-time and possessing no irregul
ical point particle is then seen not to be

xeept that at the origin, The pra
tunder time veversal for any a

= 0 te. The Schwarzschild surface 7w 2y o singularity bul acts ns o perfect unidirectional mem
L Le l I laltre 1 933 brane: causal influences can cross it but on dir . The apparent violation of the principle of
suflicient reason seems similar to that which is associated with in

nstabilities in other nonlinear phenomena.

* Finkelstein (1958) “a perfect unidirectional membrane:
causal influences can cross it in only one direction”
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Clock’s Redshift:
ds?_ \/—900(00) - 1

57 Vgoo(r) \/1-29M

C

One way membrane:
Light cones tilt for » < 2M,
future directed paths are in the direction
of r = 0 (true singularity).

r = 2M 1is a null surface called event horizon
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Maximal Extension of Schwarzschild Metric*

M. D, Kruseart
Project Mallerorn, Princelon Undversily, Princelon, New Jersey
(Received December 21, 1959)

There is presented a particularly simple transformation of the Schwarzschild metric into new coordinates,
whereby the “spherical singularity™ is removed and the maximal singularity-free extension is clearly

hilaibed

r = constant < 2M

{ = constani

r = infinity

r = constant > 2M

r = constant > 2M

r=2M

r = constant < 2M

Singulariiv (r=0)

{ = constani



C348 @ 1.4GHz

Quasar

50s Radio sources of small size
60s Optical counterparts w\ High redshift (z ~ 7)
Very luminous & extra-galactic? (> nuclear fusion, supernovae)
1964 Salpeter&Zeldovich: Supermassive BH + accretion disk
Confirmed by
o X ray observations of BH (next slide)
o 1971 Peterson and Gunn: Galaxies containing quasars showed the same
redshift as the quasars
o 1979 Walsh,Carswell&Weyman: Grav. Lensing




X-ray astronomy

e Hotgases at T ~ 1,000,000K emit X-ray
e 1962 Scorpius X-1
o Strongest X-ray source together the Sun.
o Low-Mass-X-ray binary
o 1.4M_ NS +0.42 star
e 1964 Cygnus X-1
o High-Mass-X-ray binary
o 14.8M_,  BH + 20-40M_ supergiant star

CYGNUS X-1

R.Giacconi (Nobel Prize 2002)

ENERGY (kev)
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Gravitational-wave observations

Since 2015’ |_|GO-V||’gO observations Hanford, Washlngton {Hl] megstnn Louisiana {Ll]
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Gravitational collapse

SEPTEMBER 1, 1939 FHYSICAL REVIEW VOLUME 56 .S_I.r!gy_lg_r!t_Y

On Continued Gravitational Contraction

J. T Opeexmener anp H., Snyoer .
University of California, Berkoley, California EVE nt h0r|20n
(Received July 10, 1939) (

When all thermonuclear sources of energy are exhausted a sufficiently heavy star will s
collapse. Unless fission due to rotation, the eadiation of mass, or the blowing off of muass by
radiation, reduce the star's mass to the order of that of the sun, this contraction will continue | .
indefinitely, In the present paper we sty the solutions of the gravitational field equations i Surfa ce of Ia st |nf|uence
which describe this process. In 1, general aned qualitative arguments are given on the | | 7/
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the surface of the star is pro-
ively reddened, and ean escay wely narrower range of angles, In 171, an
tie solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected, The total tme of collapse for an ob-
server comoving with the stellar matter is fnite, and for (his idealized case and typical stellar
masses, of the order of a day;an external observer sees the star asymptotically shrinking to
ite gravitational radius,

S
s

7

OVEr i [rogrs

Spatial infinity

GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES N

er Penrose
Department of Mathematics, Birkbeck College, London, England
(Regeived 18 December 1964)

S spacetime

The discovery of the quasistellar radio sources measured by local comoving observers, the ™ ﬁ Slngularlty
has stimulated renewed interest in the q i body p within its Schwarzschild radius ;L =
of gravitational collapse. It has been suggested r=2m, (The densities at which this happens event
by some authors® that the enormous amounts need not be enormously high if the total mass horizon
of energy that these objects apparently emit is large enough.) To an outside observer the
may result from the collapse of a mass of the contraction to r=2m appears to take an infinite apparent
order of (10°-10")M, to the neighborhood of time. Nevertheless, the existence of a singu- " horizon
its Schwarzschild radius, accompanied by a larity presents a serious problem for any com-|
violent release of energy, possibly in the form plete discussion of the physics of the interior
of gravitational radiation. The detalled math- region. . boundary

ematical discussion of such situations is dif-
ficult since the full complexity of general rela-
tivity is required. Consequently, most exact
calculations concerned with the implications

of gravitational collapse have employed the
simplifying assumption of spherical symme-
try. Unfortunately, this precludes any detailed
discussion of gravitational radiation—which
requires at least a quadripole structure,

The question has been raised as to whether
this singularity is, in fact, simply a proper-
ty of the high symmetry assumed. The mat-
ter collapses radially inwards to the single
point at the center, so that a resulting space-
time catastrophe there is perhaps not surpris-
ing. Could not the presence of perturbations
which destroy the spherical symmetry alter

the situation drastically? The recent rotating

L surtece

of the star

|

/



Birkhoff’'s Theorem

Theorem 1. Birkhoff (1923). The Schwarzschild metric is the unique vacuum solution in spher-
ical symmetry.

Sketch of the proof.

i. Any spherically symmetric spacetime (three spacelike rotational Killing vectors) can be foli-
ated in 2-spheres

ii. The most general form of the metric is
g= _€2<b(t,r)dt2 + 62/\(t’r)d27“ 4+ 7“2d 2Q (1)
iii. Use EFE to “eliminate” the time dependence

Corollary 2. Any spherically symmetric vacuum spacetime is static.

Physically, the staticity result can be understood as the absence of gravitational monopole
radiation (analogous to the fact that the Coulomb solution is the only spherically symmetric
solution of Maxwell equations in vacuum).

For example the exterior spacetime of a gravitationally collapsing spherical body is static always
given by the static Schwarzschild metric.



Orbits

Geodesics of photons and particles in the Schwazrschild metric can be analyzed introducing the
constants of motions associated to each Killing vector K of the spacetime. Exactly as in the
Newtonian problem the motion is on a plane and the relevant equations are

—Ta%: <l—¥)i—const—:E energy (2)
—A(r)
dx « 2
O T =T ¢ =py=-const=:L angular momentum (3)
dz® dx”
ke )

where s =0, 1 for photons and unit-mass test particles respectively. The key equation resulting
from the ones above is remarkably simple:

F+V =E? (5)

with the potential

(6)

LP\_, 2M I* 2ML’
— r r2 r3

Vi =A() (s + 55

This result is analogous to the Newtonian motion in a central potential plus a GR term ~7r 3.
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The analysis of the orbits is thus performed by analyzing the stationary points of the potential
(Note 7* = E? — 17, > 0):

2
O:—dVLZSMrQ—LQT—}—SMLQ d VL:QS]W?“—L2 (7)
dr dr?

Short summary of relevant feats:

Photons (s=0)

e The potential has maximum at r =3M (for L > 0), called light ring with energy Frr =
VV(EBM)=+/L?/(2TM?)

e The light ring corresponds to an unstable circular orbit

e Incoming photons with /' > F1r (E < ErRr) continue to » =2M and below (hit a turning
point at a minimum radius and reverse the trajectory)

Particles (s=1)

e The potential has extrema at 7+ = L2+ \/ L?(L? — 12 M?) with energies F
e The values r correspond to an unstable and a stable circular orbit respectively
o r=r,=7r_=06M is the last stable orbit (LSO) or innermost stable circular orbits (ISCO)

e Incoming particles with £ > F_ (F < E) continue to R =2M (hit a turning point and
reverse)

e Particles with £ < ¥ < E move on bound orbits (not necessarily closed; precession)



The simplest relativistic two-body problem

Imagine a small but finite mass on a circular orbit around a nonrotating black hole. The emission
of gravitational radiation determines a deviation from geodesic motion. If initially » > 2M, the
emission timescale is much longer than the orbital period and one can approximate the dynamics
as a sequence of circular orbits with progressively smaller radius and higher frequency (adiabatic
approximation). While at some point the adiabatic approximation will break, we can still analyze
the motion and make some predictons/estimates.

The orbital radius will continue decreasing to the LSO. Below that point, no stable circular orbit
is possible and the particle will fall to » =2M and then down to r = 0.

= The “two bodies” collide and merge!
The orbital frequency of the LSO is easily found from the angular momentum value at . =6M:

L7 M

02 =
rd r?(r —3M)

=622 M2 (8)

or (MS) 2—63/2, the corresponding gravitational frequency is twice this value and provides an
estimate of the merger frequency of the binary. Similarly, the energy of the LSO is

r—2M _ /8
P s \ﬁ ©)

Thus, the energy emitted in gravitational waves (per unit mass) is 1 — £~ 0.06 .




Exercises

1. Derive the formulas used above to discuss the orbits.
2. Derive the Hamiltonian of particles [Hint: Start from circular orbits]

3. Estimate the gravitational-wave merger frequency of a binary neutron star made of two euqal-
masses neutron stars of 1.4M . Comment about the result.

4. Estimate the gravitational-wave merger frequency of an equal-mass binary black hole system
of stellar-mass black holes of 301/ and supermassive black holes of 1091/,

5. The correct result of the previous exercise is 2/ (2~ 0.36. Can you say why it holds for both
cases (i.e. why there is a trivial mass scale)?



Perturbations & Stability

PHYSICAL REVIEW

Turrio Recee, Istitute di Fisica della Universitd di Torino, Torino, Italy
Jouw A, WHEELER, Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will
undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small
nonspherical perturbation,

VOLUME 108, NUMBER 4 NOVEMBER 15, 1957

Stability of a Schwarzschild Singularity

AND

(Received July 15, 1957)
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Quasi Normal Modes (QNMs)

Scattering of Gravitational Radiation
by a Schwarzschild Black-hole

Tue discovery of pulsars and the general conviction that
they are neutron stars resulting from gravitational
collapsec hawve strengthened the belief in the possible
presence of Schwarzschild black-holes—or Schwarzschild
horizons—in nature, tho latter being the ultimate stage
in the progressive spherical collapse of a massive star.
The stability of these objects, which has been discussed
in a recent report?, ensures their continued existence aftor

formation. Inasmuch as the infinite redshift associated
with it and its behaviour as a one-way membrane make the
{60 T T T _
LT o b
0 | 4 E
= >
K
- - 011
04 :
01z - 1 —~0-22
“-7'-“—-_
)] 1 1 k] i i
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z* =500 —30-0 ~10-0 10-0 30:0 50-0
Fig. 1. The effcctive potential Vesr for the odd-parity gravitational T

waves of the lowest mode I =2 plotted against x*.

Fig. 3. The outgoing wave packet out () at spatial infinity correspond-
ing to the incident (Gaussian wave packet win (x)=e-e2? with a=1.
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Pulses of Gravitational Radiation of a Particle Falling
Radially into a Schwarzschild Black Hole*

Mare Davis, Remo Ruffini, and Jayme Tiomnof
Joseph Henvy Labovatovies, Princeton University, Princeton, New Jevsey 08540
(Received 20 December 1971)

Using the Regge-Wheeler-Zerilli formalism of fully relativistic linear perturbations in (a) EFFECTIVE '
the Schwarzschild metrie, we analyze the radiation of a particle of mass m falling into a 15k POTENTIAL r=3M
Schwarzachild black hole of mass M =>m. The detailed shape of the energy pulse and of the
tide-producing components of the Riemann tensor at large distances from the source are
given, as well as the angular distribution of the radiation. Finally, analysis of the energy |
going down the hole indieates the existence of a divergence; implications of this divergence
as a testing ground of the approximation used are examined. r=2.2M

n 1 1 1 L 1
-0 -50 -30 -10 10 30 50 T
— (=t M= (R T M—

Re

e (d) ENERGY FLUX

(c) Razoo<ReW, (6) ij
0.

FIG. 1. Asymptotic behavior of the outgoing burst of gravitational radiation compared with the effective potential,
as a function of the retarded time (f —#%)/M. (a)} Effective potential for I =2 in units of M® as a function of the retarded
time (¢ — »*)/M=(T— R*)/M. For selected points the value of the Schwarzschild coordinate » is also given. (b) Radial
dependence of the cutgoing field R, (r,#) as a function of the retarded time for i=2. (c) J'i', (r*,t) factors of the Rie-
mann tensor components (gee text) given as a function of the retarded time for I = 2,3,4. (d) Energy flux integrated
over angles for I= 2,3; the contributions of higher ! are negligible.
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Pulses of Gravitational Radiation of a Particle Falling
Radially into a Schwarzschild Black Hole*

Mare Davis, Remo Ruffini, and Jayme Tiomnof
Joseph Henvy Labovatovies, Princeton University, Princeton, New Jevsey 08540
(Received 20 December 1971)

Using the Regge-Wheeler-Zerilli formalism of fully relativistic linear perturbations in (a) EFFECTIVE '
the Schwarzschild metrie, we analyze the radiation of a particle of mass m falling into a 15k POTENTIAL r=3M
Schwarzachild black hole of mass M =>m. The detailed shape of the energy pulse and of the
tide-producing components of the Riemann tensor at large distances from the source are
given, as well as the angular distribution of the radiation. Finally, analysis of the energy |
going down the hole indieates the existence of a divergence; implications of this divergence
as a testing ground of the approximation used are examined. r=2.2M
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over angles for I= 2,3; the contributions of higher ! are negligible.

Signal from NS rotating collapse
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QNMs In binary black holes remnants
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“It was a natural question then to ask: how does one see
a black hole? So, using a computer, | scattered packets
of gravitational waves from a black hole and the
quasinormal modes emerged carrying the signatures of
the black hole... this was theoretical. | had never
dreamed that this would take on an aspect of reality
some day,”

Prof. Vishveshwara (6 March 1938 — 16 January 2017)
[www.thehindu.com]



Origin of QNMSs
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Figure 2. Integration contour for Eq. ([36). The hatched area is the branch ecut
and crosses mark zeros of the Wronskian W (the QNM frequencies).

Review: https://arxiv.org/abs/0905.2975
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Perturbations of spherical spacetimes

Consider the perturbation s of a spherically symmetric background metric géoﬁ) (M= M?x
S?) in some suitable coordinates (e.g. Schwarzschild):

Gap = QSB + haﬁ (1)

Because of the background, the perturbation can be decomposed in scalar Y;,,,, vectors Z:™ and
tensor 77" spherical harmonics with indexes (¢,mm) and further separated between even (electric-
type) and odd (magnetic-type) parity according to the behaviour under reflection trhough the

origin: (—1)% and (—1)¢*%:

=) 4+ ) )

For example, the decomposition of the even parity part reads (A=0,1;a=2,3)

HoYem H1Yip n\o) ztm
PO = 7 HyY, (3)
! " PP K Yo Qay + 172G 24!

where ), is the metric on S? and the metric coefficients do not carry multipolar indexes for
simplicity (A sum on (¢, m) is also understood).



Gauge invariant quantities (under infinitesimal coordinate transformations) can be identified
from the above metric. Of particular importance are the two scalar functions for each multipole
(suffix (¢, m) understood):

\If(e>(t, r) and (¢, 7) (4)

The perturbed EFE lead to the Regge-Wheleer-Zerilli (RWZ) wave equation for the above scalar
functions (one for each multipole (¢,m) that are all decoupled from each other):

\Ijtt_ \Ijxm+‘/€:5€m (5)

where x is the tortoise coordinate that maps [2M, 00) to (—o0, 00)

-
ZC—T+2M1H<W—1) (6)

Sem is a source term from the stress-energy tensor, and V; is a potential determined by the
background metric that for even and odd parity reads, respectively (A: =/(({+ 1))

AA—=2)2r3+6(A —2)2Mr?+36(A —2)M?r +72 M3

VY= Alr) 73 (A —2)r + 6M)? (7)

v = a0 5 -5 ®)
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There is no dependence on m due to the spherical symmetry of the background. Among the lin-
earized EFE, Eq.(5) plays a special role because its asymptotic solutions for large 7 represent the
gravitational-wave degrees of freedom in the spin weighted spherical harmonics decomposition

hi—ih =S 3 g (O +U0) (6,0 ()

The RWZ problem in vacuum

The initial-boundary value problem with the RWZ requires to chose appropriate initial and
boundary conditions. Because the RWZ potential tends to zero for both x — o0 (horizon and
spatial infinity), the asymptotic solutions at large (tortoise) radii are the solution of the “free”
wave equation on the light cones.

By considering solutions with time dependence W ~ e~ (or, equivalently, the Fourier modes),
the RWZ equation can be cast in a form similar to the Schroedinger equation for stationary

states,

AV
dx?

+[w? =V ¥ =0 (10)

However, since the RWZ potential is positive, no “bound states’ can exists, and the spectrum is
continuous. The physical requirement that no signals can come out from the the horizon, implies
that the boundary condition at z — —oc is an ingoing wave,

~

Ure W (p— —00) (11)



This boundary condition also follows from requiring smoothness. Requiring instead hat no signal
can come in from spatial infinity, implies an outgoing wave for z—+o00

U~ etw?  (1— 400) (12)

With these boundary conditions, Eq.(10) admits solutions for a discrete infinity of complex
frequencies w,, with negative imaginary frequencies Im(w,,) <0. These damped modes are called
quasi-normal modes (QNMs) appear also in other wave problems with open boundaries, and
generically characterize dissipative systems. Differently from the normal modes of a vibrating
string with “fixed” boundary conditions, QNMs do not form a complete set of eigenfunctions for
the solution.

The presence of damped QNMs in the solutions suggests the stability of Schwatrzschild black
holes under small perturbations (mode stability). The conclusion is correct, although the story
is richer.

Some steps:

e Regge-Wheeler (1957) use a WKB analysis to argue that odd perturbations of the Schwarz-
schild spacetime are stable under the boundary conditions Eq.(11-12)

e Zerilli (1970) obtains the master equation for even parity (same WKB as above applies)

e Vishveshwara (1970) rules out perturbations growing in time because they diverge at the
event horizon, if they fall at infinity.

e Chandrasekhar (1975) finds a map between the odd and even parity perturbations, and proves
the QNMs are “isospectral”
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e Leaver (1986) formally identifies QNM as pole of a Green function
e Kay & Wald (1987) show that solutions with data of compact support are bounded

e Bachelot and Motet-Bachelot (1993) prove the existance of infinite number of QNMs

Solution by Laplace transform

The Cauchy problem specified by Eq.(5), boundary conditions (like Eq.(11-12)) and initial data

U(0,z) =1(x) and W4(0,x) = ¢)4(x) with compact support (or sufficiently localized) can be
solved introducing the Laplace transform

(b(s,x):/()ooe_St\I! (t, ) dt (13)

The Laplace transform is defined for positive, real s >0 and can be analytically continued into the
positive complex plane. The equation for ¢ can be immediately found by integrating the RWZ,

buoa —(5°+V(2))p=F(s,2) 1= —s1)(x) — () (14)

Two independent solutions f(s,z) of the homogeneous equation (F'=0) determine the unique
Green function of the problem; the solution is

s 1) — e s o 2 "\F(s 2N\dz' — +oof—(37$—)f+(37x+) s 2Ndx!
0.0 [ Glsaa)Fls,anda'= [ I b naar



where =1 :%(m, x')and W (s) is the Wrongskian. The formal solution of the Cauchy problem
is then obtained from the inverse Laplace transform

1 E—f—iR
\Ij(t’x)ZZ—leEnoo . et (s, x)ds (16)

where ¢ (real) is greater than the real part of all the singularities of ¢ .

The Laplace solution contains both the initial data (in F'(s,x)) and the boundary conditions.
The latter are implemented in the choice of the homogeneous solutions fi. The integral in
Eq.(16) can be performed using the residue theorem by chosing an appropriate contour in the
complex plane, as determined by the analytical properties of ¢ .

The RWZ potential decays exponentially for x — —o0, it reaches a maximum and then decays as
1 /22 for x — co. For the RWZ potential can be proven that (Bachelot&Motet-Bachelot 1993):

e f_ has poles only at negative real integers
e f, has a branch cut in the negative real axis due to the 2 decay at large radii

The solution is then determined by different contributions

e+1R
U ~ / ():/ () + Z res(., k) + / (1) (17)
e—1R largehalf—circle ) L branchcut P

L \

N~ ~ ~ -
source term QNMs Late—timetails




Figure 2. Integration contour for Eq. (36). The hatched area is the branch cut
and crosses mark zeros of the Wronskian W (the QNM frequencies).




Numerical solution of the 2+1 Teukolsky equation, application to late-time decays 10

IDO, s=-2, a=0.9, I'=2, at 6=n/2

R*=0.5222 -
RScri=1.0000 ——

200 400 600 800 1000 1200 1400
T/M

Figure 3. Evolution of the perturbation field at the horizon and .#* (6 = n/2). The
field is characterized by the quasi normal mode ringdown and a power law tail. The
plot refers to a simulation of an axisymmetric gravitational perturbation (s = —2 and
m = 0) with IDO0, I’ = 2 and a = 0.9.


https://arxiv.org/abs/1301.1591

Stability of black hole spacetimes

A fundamental question about exact stationary solutions of Einstein’s field equations (EFE) like
Minkowski, Schwarzschild or Kerr is their stability under small perturbations. Rigorous proofs
are very nontrivial and usually built on several results.

A very rough scheme is the following:

e Linear mode stability: within linear perturbation theory one proves that the time evolution
of each mode, say ¥y, , is bounded (in some norm) for a suitable class of initial data (say,
with compact support).

e Linear stability: mode stability does not, in general, guarantee that a solution composed of
an infinite sum of modes remains bound. Here one proves that all solutions to the linearised
EFE remain bounded for all times by a suitable norm of their initial data. Mode stability is
a necessary condition to linear stability.

e Nonlinear stability: here one considers the more general Cauchy problem in GR with initial
data “near’ Minkowski, Schwarzschild or Kerr, and shows that the solution remains bound.



The question of nonlinear stability of Kerr black holes is still open, although many positive results
are available. An incomplete list is:

[7] First argument for mode stability of Schwarzschild

[5] Linear stability of scalar perturbation of Schwarzschild

[8] Mode stability of Kerr

[2] Nonlinear stability of Mikowski for asymptotically flat vacuum initial data

[3] Linear stability of Schwarzschild

[4] Linear stability of scalar perturbation of nonextremal Kerr BH

[6] Nonlinear stability of Schwarzschild proven for a class of nontrivial perturbations

[1] All extremal Kerr BH are unstable to gravitational perturbationalong their event horizon

[7] Nonlinear stability of Schwarzschild
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NS In binaries: tides




BNS mergers “(2-body dynamics)*4”
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Radice, SB, Perego [ https://arxiv.org/abs/2002.03863 ] SB [ https://arxiv.org/abs/2002.03863 ]
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Tidal interactions in BNS

Aa (%)4 M5 (46 B)

M M

(Damour&Nagar 2009a 2009b)

Hpop ~ Mc* + £ |p? + A(r) — 1]

Hamiltonian
(Newtonian limit): T
A s 1 2G M Ko
r) = 5 6
cCer T

b~ Af—7/6€—z'\11(f) ~ Af—7/6€—i\11p_m,(f)+i%ﬁg(m(f))s,/z

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism at LO
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Gravitational Mass M[M]

Tidal polarizablility coefficients
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Effective-one-body framework in a nutshell

[Buonanno&Damour PRD 2000a, 2000b]

Real problem -- Effective problem eﬂ: ~ ,LL\/ A —I— péuz) + p,,%*
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A

Credit: A. Taracchini/AE|

Factorized (resummed) PN waveform [Damour,lyer,Nagar 2008]
Includes test-mass limit (i.e. particle on Schwarzschild)

Includes post-Newtonian and self-force results

Uses resummation techniques - predictive strong-field regime

Includes tidal interactions (- BNS) [Damour&Nagar PRD 2010]
Flexible framework — NR informed
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Compact binaries dynamics

The motion and radiation of a system of well separated, strongly self-gravitating (“compact”),
bodies can be described by a “matching” approach which consists in splitting the problem into
two (Damour 1983; Damour, Soffel, Xu 1991)

(i) the outer problem where one solves field equations in which the bodies are “skeletonized”
by worldlines endowed with some global characteristics (such as mass, spin or higher-multipole
moments)

(ii) the inner problem where one obtains the near-worldline behavior of the outer solution from
a study of the influence of the other bodies on the structure of the fields in an inner world tube
around each body

This approach can be used to obtain binary black hole dynamics in post-Newtonian (PN) for-
malism and to prove that the bodies’ finite-size correction enters at 5PN.

Inner problem

Definition of multipolar tidal coefficients

Consider a static, spherically symmetric star of mass M perturbed by a stationary, external grav-
itational quadrupolar field F;; ~ 9,0;0°**"2l The star is expected to respond to the external
field by developing a quadrupole moment ();;. This phenomeon is analogous to the electric
polarizability of a medium that, placed in an external electric field, develops a dipole moment.
Assuming a linear response, an (eletric-type) quadrupolar tidal coefficient is defined as

Qij = 2 Eij (1)



A more general definition of 15 (valid also for other other multipoles) and the framework for
the actual calculation can be obtained by the following argument.

In the star local frame and for large radii, the metric coefficient ggo (gravitational potential in
the weak field) can be written as

1—900:_M+ 3@@] (nlnj—%(W)—FO(i)

1 i s
9 r 9 7“3 7“4 ‘|‘—E@j$ ZCJ—FO(T‘S) (2)

2

The above expression shows that the tidal coefficient 12in Eq.(1) can be obtained by matching
the term growing as ~72 to the term falling as ~1 /7 of the asymptotics expression of the
(perturbed) metric coefficient.

This procedure can be generalized. In the local frame of the body, define the external gravito-
electric and gravitomagnetic tidal moments

Gr:=Gqy. . 4, Hp:=H; (3)

as those multipoles of the perturbed metric that grow as 7. Similarly, the internal mass and
spin multipoles moments

M; S (4)

are those that decay as »~(*T1). The multipolar tidal coefficients of the body are then postulated
as those relating the linear response of the internal moments to the external ones

My, = ue G, S, =ovHj, (5)



In a linearly perturbed, stationary star spacetime the asymptotics behaviour of the field uniquely
defines these moments (Note: this is different from the vacuum case). In the following only the
gravitoeletric sector is discussed since the magnetic sector is analogous.

Calculation of tidal Love numbers

Consider even parity, stationary perturbations of the TOV metric gg)g

G = gob + B (6)

The hé%) coefficient of the perturbed metric can be expressed in terms of a function / that is
directly related to the logarithm of the enthalpy perturbation. The perturbative equation for H is

H'+C H' +C"H=0 (7)
with
C'é@ = 62/\[—€(€+1)—|—47T(p—|—P)§—'OP—|—47T(5,O—|—9P) — 4"

C1 = %+e”[27m+4w(p—p)



(A similar equation hold for odd parity perturbations). In the star interior, Eq.(7) needs to be
solved numerically together with the background equations and by specifying a EOS. In the star
exterior, p= P =0 and m = M, and the equation reduces to the associated Legendre equation
with variable =7 /M — 1. The general solution can be expressed in terms of the associated
Legendre functions

Hever = ap Pra(x) + aq Qea(w) (8)

The coefficients ap and ag are to be determined by the boundary conditions, in particular by
the matching with the interior solution. The ratio ay:=a¢ /ap can be determined by requiring
the continuity of the logarithmic derivative at the surface

wlr) =" ()

Ply(xR) + asPra(zr)

inner R) = outer R)=(1+ _ —~
Yo (R)=y; (R)=( xR)Qég(a:R)—kaeQez(l‘R)

(10)

with xtp=R/M —1=1/C — 1 . Note this is a nontrivial statement to check, since it depends
on the EOS (and the regularity of the matter fields at the surface, e.g. the sound speed) and
on the fact that the perturbed star surface does not coincide with the background star radius.
Solving Eq.(10) for a; gives

{55/2(38}2) + C'ye(R)J?ez(ZER) (1)
Qu2(zr) + Cye(R)Qea(zR)

Ay = —



This coefficient can be now directly related to the tidal coefficient 1iy. The asymptotic behaviour
of the outer solution is determined by

~ r \l+1 . M {+1
Pro(z) ~ <—) ~ (2 12
o) ~ (- Qn~ (2) (12)
such that the growing and falling part of the perturbation are

€ rowin €41 allin _(e—}_l)
(hig )= ap () Yo (B e~ ap ()T Vi (13)

The matching gives (reintroducing the constants GG and c)

GM)”+1 (14)

2 - )G =ar( 5]

G 11y has dimension of [length]?“*!. The tidal Love numbers are defined as the dimensionless
combination

kg:zlag O20+1 — 02£+1 P£2(R/M_ 1)—Cy (R)]? (R/M—1)

2 2 Qi2(R/M —1) + Cys(R)Qea(R/ M — 1)

(15)



The tidal polarizability parameters of a star often employed in gravitational-wave astronomy are
defined as
2ky

A= G Tyneer (19)

Outer problem

Effective action

Up to 5PN order (O(v/c)'?) the motion of two body compact bodies of mass M4 A=1,2 is
described by the effective action

2
_[ R A
5—/167@ ;/M drs (17)

where an “apportune regularization” must be introduced to deal with the point-mass source term
in the EFE. Note that the calculation of the 5PN dynamics is not yet completed: for nonspinning
bodies, the conservative dynamics is fully known at 4PN, while the waveform at 3.5PN.

Finite-size effects enter at 5PN and the action needs to be augment with the term

1 1 ¢ of1
SnonminimaleZ [5%/ (Gfﬂ dTa + 5 (€+1) gi E/(Hf‘)%lm] (18)
Y,



Tidal Lagrangian at leading order

At leading order the tidal Lagrangian for body A is given by

L~ p2 (G1)? (19)
where the external tidal moment is calculated on the worldline z} of the body as

GMB)

(20)
rAB|

GL Na Uexternal aL(

with 7ap = |24 — 2| . The calculation uses the formalism of symmetric trace-free (STF) tensors
for multipolar expansions, and in particular the expression

081 ) = (-1 1)

TAB TAB

where 1% is the STF projection of the of the unit vectors n®= (24 — 2%) /rap . The result is

" 20— (GMPB)? " Bg RAEH
Lt~ ty s g +Z k{'G (MP)* =2 (22)
I, TAB TAB

The interaction is proportional to the Love numbers (or to the tidal polarizability parameters
A?), it is attractive, and it is short-range, e.g. the first term scales as ~1/7“6.



Was this useful? Quick self-check:

e What are the two main characteristics of compact objects?

e What is compactness? Make a table with order of magnitude values for mass, radius, com-
pactness, average density for WD, NS, BH (without books/googling)

e What is the origin of pressure support in WD? What is the order of magnitude of the critical
density? What are the values of the adiabatic index above/below the critical density?

e What is the physical origin of the Chandrasekhar mass? Can you provide an order of mag-
nitude argument for the existance of Mcy?

e What is the Buchdal limit?

e What is the maximum NS mass M,,.? Can you give an upper bound?

e What is the difference between the WD and the NS EOS?

e What is a black hole? Why and How black holes form from stars?

e What is the LSO? And how can you estimate the merger frequency of black hole binaries?
e What is the RWZ equation? What boundary conditions are usually imposed?

e Are black holes stable? How can one formulate the stability problem?

e What are the Love numbers and the tidalpolarizability parameters? How can they be com-
puted?

Now you can do the proposed exercises and check the references mentioned in the lectures!



