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What do we mean by “non-stationary”?

H1 binary neutron star inspiral range (DMT SenseMon)
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BNS inspiral range = given the PSD of the (average) noise, the distance at
which we'd detect a 1.4-1.4 M_sol BNS with an SNR of 8, averaged over
orientation and sky position angles
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What do we mean by “non-stationary”?

—1:GDS-CALIB_STRAIN (omicron)
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Loc<ed

What do we mean by “non-stationary”

H1:GDS-CALIB_STRAIN with Q of 57.8
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Key question: what drives non-stationarity?

Micro-seismic band ground motion (0.1 Hz--0.3 Hz)
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Glitches adversely impact search sensitivity
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GW151226 analysis

The false alarm rate of
GW151226 improves by a
factor of 567, from 1 in
320 years to 1 in 183000
years, with interferometer
data quality information!

See Eric's talk for more on
calculating SNR, event
significance, and analysis-
specific re-weighting methods
like the chi-squared veto.

Using the network SNR, the quadrature sum of SNR across detectors,
requires coincident triggers and greatly reduces false alarms.

LIGO-Virgo collaboration (2017) - arXiv 1710.02185



Glitches near signals can adversely impact PE
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Frequency [Hz]

Example: Impact of light scattering on sky

local

L1:STRAIN_SOFTWAREINJ at 1165460998 979 with Qof 45.3
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LIGO-Virgo OPA retractions: S190518bb

Automatic Preliminary Notice sent ~6 minutes after the event:
FAR: 1.004e-08 [Hz] (one per ~3 years)
PROB_NS: 1.00 [range is 0.0-1.0]
PROB_REMNANT: 1.00 [range is 0.0-1.0]
PROB_BNS: 0.75 [range is 0.0-1.0]
PROB_TERRES: 0.24 [range is 0.0-1.0]

gvent 1D
50% area: 26 deg’ event ID- G333313

W area 136 deg?®
et So—m—— i distance: 28%15 Mpc

\\\ /// 60° Mpc

LIGO DCC G1900994



S190518bb: what'’s in the data”?

H1:GDS-CALIB_STRAIN,reduced at 1242242379.923 with Q of 45.3

Frequency [Hz]

-60 -40 -20 0 20 40 60
Time [seconds]

LIGO DCC G1900994

Normalized Energy



Frequency [Hz]

1000

100

100

"Worst offender” glitches

Extremely loud

-1.0 0.0 1.0 20 =20 -1.0 0.0 1.0

Time [seconds]

Normalized energy



"Worst offender” glitches

1000
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Blips Extremely loud
* Few known witnesses * Much more common in
 Shared time-frequency O3 than in O2 for LIGO
morphology with high detectors
mass CBC signals * Few clear withesses

e Pollute PSD estimation



"Worst offender” glitches

Slow scattering Fast scattering

* Well understood * Modulated fast scattering
witnesses and coupling * Troublesome for lower

e Still difficult/impractical to mass CBC templates
veto because they are at  Most comment LIGO-
times so frequent Livingston: thought to be

understood for O3

Slow scallering Fasl scallering
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Uptime and the global network of detectors
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What does GW detector data look like?
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What's in a GW data file?

meta: Meta-data for the file. This is basic information
such as the GPS times covered, which instrument, etc.

strain: Strain data from the interferometer. This is "the

data’, the main measurement of spacetime strain
recorded by the LIGO detectors.

quality: A 1 Hz time series describing the data quality
for each second of data.

h(t) sampling rate for LIGO detectors: 16384 Hz
Open data: 4096 Hz and 16384 Hz

Why do we care about sampling rate, s ?

20



Discrete Time Samples
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Discrete Time Samples
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Discrete Time Samples
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Nyquist Frequency

Nyquist Frequency = é

2

Data can only accurately represent frequency content
below the Nyquist frequency

Higher frequency signhals will be lost or “aliased” to
lower frequencies



Introduction to GWpy

A python package for gravitational-wave astrophysics

https://gwpy.github.io

Heavily dependent on humpy, scipy, astropy, matplotlib

Provides intuitive object-orientated methods to access GW
detector data, process, and visualize them

Not specific to GW data other than data access routines

25
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https://gwpy.github.io
http://numpy.org
http://www.scipy.org
http://www.astropy.org
http://www.matplotlib.org

GWpy Quickstart

Import the class that represents the data you want to study

gwpy.timeseries TimeSeries

Fetch some open data from the OSC

=>> data - TimeSeries. fetch_open_data('L1l', 'Sep 14 2015 09:50:29', 'Sep 14 2015 09:51:01')

Make a plot

>>> plot = data.plot()

Display the plot
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D. Macleod
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Time domain

x10-® LIGO-Hanford Observatory data for GW150914
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Time domain = Frequency domain

x10-12 LIGO-Hanford Observatory data for GW150914
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The Fourier Series

Any function can be represented as a sum of sines and cosines
(with some coefficients that can also be functions).

f(x) = ZAncos(nm:) ZB Sm(nm:)



The Fourier Transform

When we transform our function or time (or space) into the
“frequency domain”, we are projecting f(x) onto an
orthogonal basis of sines and cosines.

O £t

OO

o — O
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The Fourier Transform

When we transform our function or time (or space) into the

“frequency domain”, we are projecting f(x) onto an
orthogonal basis of sines and cosines.

5 o
Fourier transform r(f) = / dl (L) p 12T [t
Inverse Fourier e O ft
T — £~ £\ 12Tt

transform z(t) = /_ . df ©(f)e

Another way to think about it: when we take a Fourier

transform we are decomposing the function into its
component frequencies.

31



How would you describe this function?
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Slide from J. Kanner
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15| 3*Sin(2*pi*1 20*1:)

Our original function
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Time Domain Frequency Domain
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Power Spectral Density

Parseval’s theorem:

/ ot (n)? = / df |7(1)]7

.’x.

— Total energy in the data can be calculated in either time domain or

frequency domain
Units:

#(f)|* Energy spectral density
(normalize by 1/T to get power)
Signal energy per unit frequency (per Hz)

lz(f)| ocAmplitude spectral density
(sgrt of power for each discrete frequency)
Signal amplitude per unit frequency (per sqrt Hz)

Slide adapted from P. Shawhan
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LIGO data in time and frequency
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0.5 second FFT; 5 averages covering 1.5 seconds; 50% overlap


https://git.io/gwpy-ligo-scattering-animation

Time-frequency spectrogram

LIGO-Hanford h(t)
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Made with GWpy by Duncan Macleod

Spectrogram using overlapping FH'I's
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Amplitude
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The Q transform
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Time-frequency spectrograms
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Sleuthing with data visualization: what is this!?

Q-transform: H1:GDS-CALIB_STRAIN,reduced
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Sleuthing with data visualization: what is this!?
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GWopy data visualization: Try it for yourself

Get some practice with GWpy - access GW detector data
and make an Omegascan

Navigate to tutorials from the 2020 GWOSC workshop:
https://github.com/gw-odw/odw-2020/tree/master/Day_1

Work through tutorials 1.1-1.3

Support will be available in office hours:
16:00 June 11th and 15th

Note: this material is also available in the form of a 2021 web
course on the GWOSC


https://github.com/gw-odw/odw-2020/tree/master/Day_1
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An overview of GW detector calibration
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The ideal: fix it in the detector!

Ground Motion at the Time of Each Scattering Glitich
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, January 2020 at the LIGO detectors
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When we can't fix it: data quality products

Available via the GWOSC

Bit Short Name Description
Data Quality Bits
DATA data present
Note: These 1 CBC_CAT1 passes the cbc CAT1 test
definitions are 2 CBC CAT2 passes cbc CAT2 test
slightly different 3 CBC_CAT3 passes cbc CAT3 test
pbetween LIGO 4 BURST_CAT1 passes burst CAT1 test
and Virgo data 5 BURST_CAT?2 passes burst CAT2 test
BURST_CAT3 passes burst CAT3 test
Injection Bits
0 NO_CBC_HW_INJ] no cbc injection
1 NO_BURST_HW_IN]J no burst injections
2 NO_DETCHAR_HW_INJ] no detchar injections
3 NO_CW_HW_INJ no continuous wave injections
4 NO_STOCH_HW_INJ no stoch injections

47



Data quality information

DATA (Data Available): Failing this level indicates that LIGO data are not publicly
available because the instruments or data calibration were not operating in an
acceptable condition.

48



Data quality information

DATA (Data Available): Failing this level indicates that LIGO data are not publicly
available because the instruments or data calibration were not operating in an
acceptable condition.

CAT1 (Category 1): Failing a data quality check at this category indicates a
critical issue with a key detector component not operating in its nhominal
configuration.

e These times are identical for each data analysis group.

e [imes that fail CAT1 flags are not available as LIGO open data.

49



Data quality information

DATA (Data Available): Failing this level indicates that LIGO data are not publicly
available because the instruments or data calibration were not operating in an
acceptable condition.

CAT1 (Category 1): Failing a data quality check at this category indicates a
critical issue with a key detector component not operating in its nominal
configuration.

e These times are identical for each data analysis group.

e [imes that fail CAT1 flags are not available as LIGO open data.

CAT2 (Category 2): Failing a data quality check at this category indicates times
when there is a known, understood physical coupling to the gravitational wave
channel. For example, high seismic activity.

50



Data quality information

DATA (Data Available): Failing this level indicates that LIGO data are not publicly
available because the instruments or data calibration were not operating in an
acceptable condition.

CAT1 (Category 1): Failing a data quality check at this category indicates a
critical issue with a key detector component not operating in its nominal
configuration.

e These times are identical for each data analysis group.

e [imes that fail CAT1 flags are not available as LIGO open data.

CAT2 (Category 2): Failing a data quality check at this category indicates times
when there is a known, understood physical coupling to the gravitational wave
channel. For example, high seismic activity.

CAT3 (Category 3): Failing a data quality check at this category indicates times
when there is statistical coupling to the gravitational wave channel which is not
fully understood.
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Data quality information

DATA (Data Available): Failing this level indicates that LIGO data are not publicly
available because the instruments or data calibration were not operating in an
acceptable condition.

CAT1 (Category 1): Failing a data quality check at this category indicates a
critical issue with a key detector component not operating in its hominal
configuration.

e These times are identical for each data analysis group.

e [imes that fail CAT1 flags are not available as LIGO open data.

CAT2 (Category 2): Failing a data quality check at this category indicates times
when there is a known, understood physical coupling to the gravitational wave
channel. For example, high seismic activity.

CAT3 (Category 3): Failing a data quality check at this category indicates times
when there is statistical coupling to the gravitational wave channel which is not
fully understood.

Data quality levels are defined in a cumulative way: a time which fails a given
category automatically fails all higher categories.

Data quality categories are defined independently for different analysis

groups: if something fails at CAT2_BURST, it could pass CAT2_CBC.
52



How are data quality segments defined?

For O1-O3 and prior analyses:
e Data quality vetoes required an auxiliary witness

e That auxiliary witness was required to be safe; to not be
sensitive to changes in spacetime strain

¢ [his Is tested empirically with hardware injections -
inject a signal into h(t) and conduct statistical correlation
tests with auxiliary channels of interest

¢ \/eto segments were defined based on noise sources
known to couple to h(t)

¢ \/eto categories were determined for each type of search
iIndependently depending on noise contributors to that
search’s background

e Note: There are differences between CAT2 and CAT3
definitions between the burst and CBC searches

53



Auxiliary channels

We record over 200,000 channels per detector that monitor the environment and
detector behavior.

We can use these to help trace the instrumental causes of glitches that pollute
the search backgrounds.
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Physical envwonment channels
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Example: glitches witnessed by microphone
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Example: glitches witnessed by accelerometers

5
5 M CS
g 47 W EX
E .1 .M EY
=
e
=" 2 -
o
-
-

0

-
N 20
= &
> 100 15
= o
3 10 3
:
= 5.5

10 0

0 4 8 12 16 20 24 28 32 36 40

Time [seconds]



Example of a data quality veto
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Measuring the impact of DQ vetoes: volume-time

= = Time lost to vetoes I IFAR 1.0 yr Q IFAR 100.0 yr
c
-
e 1.12 -
~ 1.08
o L N —
a o o
~ 1.04 A o
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E 1 00 -_ — & L B I __J L B ___J -t L B I J -’- ----------- LB I |
5 (oXe] o
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Classitying LIGO-Virgo glitches with no witness

gravityspy.org

J GRAVITY SPY ABOUT CLASSIFY TALK COLLECT BLCG

Livingston Duration Frequency evolving

[ -] Air Compressor (50 Hz) [] No Glitch
D Blip D Paired Doves
D Chirp [:] Power Line (60 Hz2)
m Extremely Loud D Repeating Blips
[:] He ix D Scattered Light
[i]) KoiFish (] scratchy
Q Light Modulation G Tomte

r‘ [:] Low Frequency Burst D Violin Mode Harmonic (500 Hz)

> D Low Frequency Ling D Wandering Lire
[ -] None of the Above [ ] Whistle

1 Showing 20 of 20.
0

-0.25 -0.125 0.0 0.125 0.25
Time (s) Lo
| 4 @000 1 A

FIELD GUIDE

—
w
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LigoDV-web and Glitch DB

https:/Idvw.ligo.caltech.edw/ldvw/view

LigoDV-Web — v0.1.07 Glitch DB

Welcoma .Jessica Mciver (Zdmin)

LIGO

Home History +  Status +  GlitchDB ~ Batch « Help~r  Admn~

Searchable database of CNN-classified glitches

< | |Page: 1 ol 3| Go | > | Save ccmments

249 matches found.

Unique ld tihveWX1dQ
GPS Time 1229057821.312

UTC Time S? 5{; 112 o /
Pipeline GravitySpy

Class Scattered_Light

Status testing

Ifc L1

SNR 80.046

Amplitude 1.89e-21
Peak freq 28.117

Central 39//7.720
freq




Mitigating glitches near signals for PE
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LIGO-Virgo collaboration PRL (2017)



Glitch subtraction with BayesWave

S=R*h+g+n(;

Signal: coherent wavelets

Glitches: incoherent wavelets

What is “Gaussian enough” for PE? Use PSD non-stationarity test

10°

Frequency [Hz]
S

10 ‘ ‘
45 4 2% 2 145 4 45 0 05 1 15 39 3 2% 2 1% 1 95 0 05 1 1.5

Time [seconds] from 2019-05-03 18:54:04.3 UTC (1240944862.3)Time [seconds] from 2019-05-03 18:54:04.3 UTC (1240944862.3)

Plots by D. Davis. BayesWave paper: Cornish and Littenberg CQG 2014

1 BT 29

Normalized amplitude
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Outline

GW detector characterization
The challenge of non-stationary GW detector data
- Uptime
+ Search sensitivity and PE accuracy
-+ The “worst offender” glitches

Technigues for identification and characterization
- Data visualization: into the frequency domain!
- GWOSC tools: GWpy and Omegascans

Mitigation: Data quality products and glitch subtraction

64



Calibrating GW detector data

Low Noise
Electrostatic \.b
Actuator

End Test
Mass Y
-
Elz
< | >
Input Test v
Mass Y

ALfee = ALy (t) — ALy (%)

Input Test

To Mass X

GW Readout Port *

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017)

4 km _
End Test High Range

Mass X Electrostatic
Actuator

Slide by M. Wade
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Basic GW detector interferometer schematic

Low Noise
Electrostatic —_,.|
Actuator =) =
Top Mass ~
End Test
Mass Y
Upper T\ 1\
Intermediate
Mass (U)
-
£ |z
< | > Penultimate 0
¢ N
Mass (P) 0 Q K |
/ Electromagnetic
I | Actuators
Input Test vy J @
Mass Y Test Mass (T) ))

- (e

From X Arm \
| '
Laser 2Kk |
Input Test End Test High Range
Mass X Mass X Electrostatic
10 Actuator

GW Readout Port *

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017)

Keeping the
detector in the null
range involves:

Lots of active
selsmic 1solation
(including quad.
pendulum
system)

AND control
loop applied to
readout signal
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The Differential Arm (DARM) control loop
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|
|
|
|
|
|
|
|
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|
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Digital filters include:
notch filters
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X (PC) ' | e
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A | o Tos
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|
|
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ST low-pass filter
Realtime interferometer control

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017) Slide by M. Wade 67



Reconstructing h(t) from the DARM loop

' AL | I |
e Sensing : g |
| | terr :
| ¢ » : > 0 : »|1 /(C(model) I
¢ (PO) : I | | :
N . | | |
s Digital[ | | G w | a
. Filter l : i |
. . ! ! | approximate
| Actuation l ' dog : ' reconstruction
l mode
| |
. - :
! |
S } S :
Realtime interferometer control Calibration pipeline

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017) Slide by M. Wade 68



Reconstructing h(t) from the

: AL | | |
e Sensing { J :
: L Yerr |
| —» C : >0 : »|1/C(model) |
. (PC) | I : | |
TN . T !
! Digital ! | '/
: @ Filter v : | !
|
| | I |
ALgee °':/ Actuation \d ' :
!  Cetrl !
! A <<]< g A(model) !
| ' ! |
- S :
|
e } . |
Realtime interferometer control Calibration pipeline

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017)

DA

SM loop

h(t) = R * derr (t)
where
1 [1+G
R—z( C >
and
G=CDA

Slide by M. Wade
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Reconstructing h(t) from the DARM loop

| | I |
A Sensing : R |
: L Yerr :
I —» ( : >0 : »|] /C(model) !
| | |
L a
5 ¢ I |
N Digital | | w '
i Q Filter v : |
al ! |
ALfree o Actuation g :
|  ctrl : |
I A %‘ > O | A(model) I
| ' | |
. - :
|
i | N :
Realtime interferometer control Calibration pipeline

h(t) L = e * dopr + A * degpl

This method historically allowed us to bypass tracking the digital filters D

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017) Slide by M. Wade 70



Sensing function

_ 1 f? —2mifrc
o0 =re0te (1775 ) (Frgor crmaam) o
| | . | |
Overal Fabry-Perot Optical anti- Electronics
ain cavity spring from signal  response and
S response recycling cavity time delay

Blue color indicates parameters that change in time

Time-dependent parameters are tracked using narrow-
band sinusoidal injections

[7] Tuyenbayev et al., Class. Quantum Grav. Vol. 34 Num. 1 (2016) Slide by M. Wade 71



Absolute calibration: The photon calibrator

Transmitter Penultimate
Module _lf\ Beam-relay Mass t
L, )
periscope Pcal Beams
' | ‘
+ Main interferometer beam Suspended
test mass
Stray light ifo beam * 0
baffle
Receiver >
Module Vacuum envelope
Test Mass

Modulated auxiliary laser (photon calibrator) is used to set
absolute scale factor for calibration

[6] Karki et al. Review of Scientific Instruments 87, 114503 (2016) Slide by M. Wade 72



Actuation function

A(f,t) = [ku () Au(f) + kp(t)Ap(f) + ko (t) A (f)] e 2™ 7
‘ - - ) \

Upper Penultimate Test mass Time
intermediate  mass actuation ~ actuation delay
mass actuation response response
response

Blue color indicates parameters that change in time

Time-varying gains of each stage are currently
compensated for in calibration software

[7] Tuyenbayev et al., Class. Quantum Grav. Vol. 34 Num. 1 (2016) Slide by M. Wade 73



Actuation function

- Mechanical
response of each
stage of pendulum

[3] Cahillane et al., Phys. Rev. D 96, 102001 (2017)
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“Calibration lines”

1243641618-1243723018. state: Locked]
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Calibration uncertainty

LIGO Hanford O3a calibration uncertainty vs. frequency
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Calibration uncertainty evolves over time!

Collection of H1 O3B 68% C.I. Percentile Contours

----- Jan 14-Feb 11

=
o
N

| REEERE Feb 11-Mar 16 \

Magnitude [m/m]
8

10! ‘ ' T T ‘ ‘ 103
Frequency [Hz]

Phase [deg]

10! | 102 | S 108
Frequency [Hz]

Betzweiser et al. 2021

Example:
change in
electronics
cabling in
TST actuation
function on
February 11,
2020
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Useful resources

GWpy examples: https://gwpy.qgithub.io/docs/latest/examples/index.html

Virgo DetChar paper: https://arxiv.org/abs/1203.5613

02-03 LIGO DetChar paper: _https://arxiv.org/abs/2101.11673
LIGO Calibration uncertainty:_https://arxiv.org/abs/2005.02531
LSC Calibration bootcamp: https://dcc.ligo.org/LIGO-G2100709

The Gravitational Wave Open Science Center (GWOSC): https://
WWW.QW-openscience.org/
GWOSC tutorials: https://www.gw-openscience.org/tutorials/

Public interferometer status monitoring: https://www.gw-
openscience.org/detector_status/

LIGO-Virgo alerts guide: https://www.gw-openscience.org/alerts/

Gravity Spy: gravityspy.org
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Extra slides:
PSD estimation
Intro to GWpy digital filters



Estimating the PSD

Step 0: Take a Fast Fourier Transform (FFT), which is any

algorithm useful for quickly estimating the Discrete Fourier
Transform that describes a discrete time series.

Need to shift our thinking to discretized data; frequency
bins instead of continuous smooth sinusoids
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Estimating the PSD

Step 1: Apply a window to your data (if it's linear! as a time series is) to
prevent spectral leakage from the assumption the signal is periodic.

Hanning Window

Window

Equals

: fendorn Sien:
W [v| .
3 " \[‘ Multiply
=
_g. - C
< Abrupt transitions
- possible at beginning
and end
1
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°
=
=1
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<
0
Time
+
W
o
=
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£
<

Image: Siemens.

“Smoothed"” ends after

I, (L m

Windowed Signal

window applied

Time
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Estimating the PSD

A single windowed FFT is unbiased (i.e. will give the correct mean
PSD), but has high variance.

Solution: average several FFTs!

Step &: Divide your data into shorter time segments; take a
windowed FFT of each, and average these together.

Note you lose some frequency resolution this way.

Welch’s method averages the mean value for each frequency
bin across FFTs, with some overlap in the data analyzed.
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Averaging FFTs

WINDOWING AND AVERAGING WITH
0% OVERLAP

WINDOWING AND AVERAGING WITH
50% OVERLAP

https://www.dewesoft.com/pro/course/spectral-analysis-using-the-fft-29?page=10



[Hz ™17

Example: Averaging FFTs

FFT length = 5 seconds FFT length = 5 seconds
Overlap = 2 seconds Overlap = 2 seconds
120 averages 4 averages
10-% 10-'¢ ‘i
10-2° 10-=° ;'
10_21 ‘ 10-2'. .;
| .
10-22 , .N '3
: ]
10-22 3 10—= 3
| 1024 1
10-24 : 3
| 102 3
1020 3 3
* o o e pa
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[Hz17?)

Example: FFT length

FFT length = 5 seconds
Overlap = & seconds
6 averages

10 100 10°
Frequency [Hz]

[Hz~1?]

10-*2
102
102"
1022
102
102
102

10-2°

FFT length = 2048 seconds
Overlap = 1024 seconds
6 averages

10 100 10°
Frequency [Hz]
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Signal processing with GWpy

GWpy provides FFT wrappers to estimate frequency-domain
content of data:

FFT length (s)4

>>> asd = data.asd(4, 2)
Can also specify:

Time window
(default = Hanning)
Averaging method
(default = Welch)

n’._'

|

= —IL“IIIIF"'I
_-“i\

Frequency [Hz]




Signal processing with GWpy

GWpy provides simple signal-processing methods to
filter data

* lowpass, highpass
» bandpass

* notch

» whitening

You will use these tools to design
frequency domain filters later!



Response

High pass and low pass filters

A “low pass’ filter Filter “order”
governs the
0 dBl--—- slope
3dB
-3dBf---—-—— - —
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Frequency

Credit: electronics-notes



0dB
-3dB

Qutput

-dB

Bandpass filter

Pass Band

p

fecenter

Frequencey (Hz)
(Logarithmic Scale)

[, corner frequency

Creait: Kennetn O Keese, 11

Tu



Notch filter

Not quite the inverse of the bandpass filter

Only described by one frequency (and the filter order)
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Credit: electronics-notes



Whitening
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