

European Commission

Influence des données de structure nucléaire sur la mesure des rendements de fission avec LOHENGRIN

FROM RESEARCH TO INDUSTRY

27-28/06/2022, Workshop NACRE : La structure nucléaire et les données nucléaires pour les réacteurs, Digiteo, Saclay

<u>A. Chebboubi</u>, G. Kessedjian, O. Serot, O. Litaize, D. Bernard CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache, F-13108 Saint-Paul-lès-Durance C. Sage, O. Méplan, M. Ramdhane LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble, France U. Köster, P. Mutti Institut Laue-Langevin, F-38042 Grenoble, France

IRESNE I Research Institute for Nuclear Systems for Low Carbon Energy Production

French Alternative Energies and Atomic Energy Commission - www.cea.fr

- Evaluated Nuclear Data Files (ENDF) : input parameters for nuclear reactor simulations !
- How is build an evaluated file (ENDF) ?
- \rightarrow models
- \rightarrow experimental data (Y(A), Y(A,Z), Y(TKE|A) ...)
- Why do we use models?
- \rightarrow get data which cannot be measured
- \rightarrow reduce uncertainties

Evaluated nuclear data

- Evaluated Nuclear Data Files (ENDF) : input parameters for nuclear reactor simulations !
- How is build an evaluated file (ENDF) ?
- \rightarrow models
- \rightarrow experimental data (Y(A), Y(A,Z), Y(TKE|A) ...)
- Why do we use models?
- \rightarrow get data which cannot be measured
- \rightarrow reduce uncertainties
- How to improve the evaluation process?
- \rightarrow more "physical" models: improve knowledge of the fission process
- \rightarrow new methods
 - Better control of systematic uncertainties
 - More accurate data
 - Evaluation process
- → complementary measurements
 - Substitution reaction
 - Isomeric ratio

Definition of fission yields

Fission yields = **production rate** of fission fragment for a given mass A, nuclear charge Z, excitation energy E^* , kinetic energy E_k , angular momentum J, parity π , and isomeric state m

 $Y(A, Z, E_k, E^*, J^{\pi}) = Y(A) \times P(Z|A) \times P(E_k|A, Z) \times IR(m|A, Z, E^*, E_k)$

cea **Definition of fission yields**

Fission yields = production rate of fission fragment for a given mass A, nuclear charge Z, excitation energy E^* , kinetic energy E_k , angular momentum J, parity π , and isomeric state m

$$Y(A, Z, E_k, E^*, J^{\pi}) = Y(A) \times P(Z|A) \times P(E_k|A, Z) \times IR(m|A, Z, E^*, E_k)$$

Independent fission yields Y(A, Z, m) are used in nuclear reactor studies

- Isotopic composition
 - \rightarrow Residual power
 - \rightarrow Radiotoxicity of spent fuel

10.15669/fukushimainsights.Vol.1.88, 2021

©Orano, La Hague

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorizatior

Definition of fission yields

Fission yields = **production rate** of fission fragment for a given mass A, nuclear charge Z, excitation energy E^* , kinetic energy E_k , angular momentum J, parity π , and isomeric state m

$$Y(A, Z, E_k, E^*, J^{\pi}) = Y(A) \times P(Z|A) \times P(E_k|A, Z) \times IR(m|A, Z, E^*, E_k)$$

Independent fission yields Y(A, Z, m) are used in nuclear reactor studies

Isotopic composition

- \rightarrow Residual power
- \rightarrow Radiotoxicity of spent fuel

$IR(m|A, Z, E^*, E_k)$: modeling prompt particle emission / foreseen material damage and heating in reactor studies

©Orano, La Hague

27-28/06/2022, Workshop NACRE, Digiteo, Saclay

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

Institut Laue-Langevin

- ILL : founded and govern by France, Germany and United Kingdom
- Build in 1967
- 40 instruments (mainly neutron spectroscopy for biology, materials ...)
- 540 member staff + 1400 users per year
- 105 M€ per year
- High Flux Reactor : 58.3 MW thermal. New vessel in 1995.

LOHENGRIN working principle

Lohengrin : selection with the mass over ionic charge $\frac{A}{q}$ and Kinetic energy over lonic charge $\frac{E_k}{q}$ ratios

 $(A_1, E_1, q_1) \equiv (A_2, E_2, q_2) \equiv (A_3, E_3, q_3)$

How to measure independent yields at LOHENGRIN

Time evolution of the target (Burn-Up)

Main issue : burning of the target BU(t) and beam time

- Choices E_k , q distributions must be made
- Correlations between E_k and q make the analysis more complex
- Tremendous effort over 15 years to reduce the uncertainties and handle bias !

Current data taking :

- 3 E_k scan & 1 q scan to measure a mass yield (at least)
- 1 ionic charge with HPGe to measure independent yield
- For some masses (high electronic conversion) more scan are mandatory

Experimental setup

High Purity Germanium (HPGe)

Assess fission fragment nuclear charge through γ measurements

 \rightarrow Current solution to study isotopic yields in the heavy mass region

 \rightarrow Results are dependent of the knowledge of fission fragment nuclear structure scheme

- Implantation of isotopes on the tape and the vacuum chamber
- Tape roll out : only the chamber frame "contains" isotopes
- Measurement of the "frame decay"

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

Gamma spectra: example for mass 140

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

Analysis: example ²⁴¹Pu(n_{th},f) reaction

Analysis: example ²⁴¹Pu(n_{th},f) reaction

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

Research Institute for Nuclear Systems for Low Carbon Energy Production

CEZ Analysis: example ²⁴¹Pu(n_{th},f) reaction

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

Ceal Impact of nuclear structure uncertainties

$$I_{\gamma} = I_{\gamma}^{rel} \times I_{norm}^{\gamma}$$

Final uncertainty on isotopic yield is mainly driven by I_{norm}^{γ}

 $0.1 \% \le I_{rel} \le 5 \%$

Example of uncertainties

lsotope	Total Uncertainty (on cumulative yields)	I_{norm}^{γ} uncertainty
¹⁴¹ Xe	23,29%	20,000%
¹⁴¹ Cs	13,12%	6,329%
¹⁴¹ Ba	11,56%	3,077%
140 	11,06%	0,11%
¹⁴⁰ Xe	16,38%	10,00%
¹⁴⁰ Cs	11,72%	3,75%
¹³⁹	14,04%	8,47%
¹³⁹ Xe	15,20%	10,71%
¹³⁹ Cs	21,95%	19,72%
¹³⁹ Ba	15,08%	1,15%
¹³⁸	92,05%	7,14%
¹³⁸ Xe	32,02%	3,49%
^{138m} Cs	16,65%	15,79%
¹³⁸ Cs	16,04%	1,57%

lsotope	Total Uncertainty (on cumulative yields)	I_{norm}^{γ} uncertainty
¹³⁷ Te	20,71%	16,95%
137	12,13%	10,00%
¹³⁷ Xe	14,38%	9,68%
¹³⁶ Sb	39,36%	33,33%
¹³⁶ Sn	15,66%	11,17%
136	9,60%	1,65%
^{136m} Xe	9,01%	8,00%
¹³² Sn	12,49%	2,46%
¹³² Sb	12,57%	10,00%
¹³² Te	13,25%	3,41%
¹³⁰ ln	13,65%	5,81%
¹³⁰ Sn	12,24%	2,99%
¹³⁰ Sb	11,50%	5,00%
¹³⁰ Te	15,50%	5,00%

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

27-28/06/2022, Workshop NACRE, Digiteo, Saclay

IRESNE | DER | SPRC | LEPh Research Institute for Nuclear Systems for Low Carbon Energy Production

French Alternative Energies and Atomic Energy Commission Document owned by the CEA - Reproduction and distribution outside the CEA subject to the issuer's authorization

Thank you for your attention

A. Chebboubi, G. Kessedjian, O. Serot, O. Litaize, D. Bernard CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache, F-13108 Saint-Paul-lès-Durance C. Sage, O. Méplan, M. Ramdhane LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble, France U. Köster, P. Mutti Institut Laue-Langevin, F-38042 Grenoble, France

FROM RESEARCH TO INDUSTRY

IRESNE I Research Institute for Nuclear Systems for Low Carbon Energy Production

French Alternative Energies and Atomic Energy Commission - www.cea.fr