Recent developments within CI and beyond for nuclear spectroscopy and neutron capture

Kamila Sieja

Institut Pluridisciplinaire Hubert Curien, Strasbourg

28/06/2022

R-process nucleosynthesis

Nuclear models are needed to provide input for r-process simulations: *masses*, *neutron-capture rates*, β-decay rates, fission barriers...

B. Metzger, G. Martinez-Pinedo et al., Monthly Notices of the Royal Astronomical Society. 406, 2650

Configuration Interaction approaches

 The wave-function of the ground state is expressed as a sum of the vacuum Φ₀ and particle-hole excitations build on this vacuum state

$$|\Psi_{0}\rangle = C_{0}|\Phi_{0}\rangle + \sum_{i\alpha} C_{i\alpha}|\Phi_{i\alpha}\rangle + C_{ij\alpha\beta}|\Phi_{ij\alpha\beta}\rangle + \cdots$$
(1)

where greek and latin symbols refer to particle and hole states, respectively. In short notation:

$$|\Psi_0
angle = \sum_{ph} C_{ph} |\Phi_{ph}
angle$$
 (2)

The equation for the energy reads

$$E = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle = \sum_{pp'hh'} C^*_{p'h'} \langle \Phi_{p'h'} | \hat{H} | \Phi_{ph} \rangle C_{ph}$$
(3)

and it is solved by diagonalization.

 The vaccum for particle-hole excitations 1p-1h, 2p-2h,..., np-nh can be, e.g. the lowest-filling configuration (Slater determinant) outside a doubly-magic core.

Radiative neutron capture: resonant capture

$$\sigma_{(n,\gamma)}^{\mu\nu}(E_i,n) = \frac{\pi\hbar^2}{2M_{i,n}E_{i,n}} \frac{1}{(2J_i^{\mu}+1)(2J_n+1)} \sum_{J,\pi} (2J+1) \frac{T_n^{\mu}T_{\gamma}^{\nu}}{T_n^{\mu}+T_{\gamma}^{\nu}}$$

for $E_n \sim \text{keV}$ $T_n^{\mu} \gg T_{\gamma}^{\nu} \longrightarrow \sigma^{\mu\nu} \sim T_{\gamma}^{\nu}$ $E_{i,n}, M_{i,n}$ - center-of-mass energy, reduced mass of the system $J_n = 1/2$ -neutron spin $T_n^{\mu} = T_n(E, J, \pi; E_i^{\mu}, J_i^{\mu}, \pi_i^{\mu})$ $T_{\gamma}^{\nu} = T_{\gamma}(E, J, \pi; E_m^{\nu}, J_m^{\nu}, \pi_m^{\nu})$ - transmission coefficients

For a given multipolarity $T_{XL}(E, J, \pi, E^{\nu}, J^{\nu}, \pi^{\nu}) = 2\pi E_{\gamma}^{2L+1} f_{XL}(E, E_{\gamma})$ Test, using CI, the key ingredients of Hauser-Feshbach calculations:

- description of γ emission spectra
- Brink-Axel hypothesis

Radiative neutron capture: direct capture

Xi. Yu and S. Goriely, Phys. Rev. C86 (2012) 045801

$$\sigma^{DC}(E) = \sum_{f=0}^{x} S_f \sigma_{dis}(E)$$
$$\langle S \rangle \int_{E_x}^{S_n} \sum_{J_f, \pi_f} \rho(E_f, J_f, \pi_f) \times \sigma_f^{cont} dE_f$$

If no experimental data available:

• use combinatorial model for the level density with $\langle S \rangle$ =const

■ The key ingredients: low-energy levels and spectroscopic factors

■Validate theoretical approximations (HFB) in exotic nuclei using CI predictions

Configuration Interaction: generalities

Cl relies on the possibility of diagonalizing the Hamiltonian matrix and deriving (constraining empirically) a suitable effective interaction.

$$H_{eff}|\Psi_{eff}
angle=E|\Psi_{eff}
angle$$

- Direct capture: knowledge of the lowest-lying levels (energies and spectroscopic factors)→ quality of the effective Hamiltonian
- Resonant capture: knowledge of statistical properties (energies and transitions in nuclear continuum)→ possibility of computing of hundreds of nuclear levels

CI computations of γ -decay strength functions

Dipole strength in ⁴⁴Sc: theory vs exp

-all states below $S_n \sim 10 \text{MeV}$ -86642 *M*1matrix elements -65670 *E*1 matrix elements K. Sieja, Phys. Rev. Lett. 119 (2017) 052502

$$f_{M1/E1}(E_{\gamma}) = 16\pi/9(\hbar c)^3 S_{M1/E1}(E_{\gamma})$$
$$S_{M1/E1} = \langle B(M1/E1) \rangle \rho_i(E_i)$$

Qualitative agreement with data:

-the upbend is due to *M*1 transitions -the *E*1 pattern is flat with the non-zero $E_{\gamma} \rightarrow 0$ limit -consistent with EGLO model ____7/21

S. Goriely, S. Hilaire, S. Péru and K. Sieja, PRC98 (2018) 014327

To describe radiative decay, phenomenological low-energy corrections fitted to reproduce CI trends and data are added to microscopic QRPA-Gogny *M*1 and *E*1 PSF:

$$\begin{aligned} f_{E1}(\epsilon_{\gamma}) &= f_{E1}^{QRPA}(\epsilon_{\gamma}) + f_0 U / [1 + e^{(\epsilon_{\gamma} - \epsilon_{0})}] \\ f_{M1}(\epsilon_{\gamma}) &= f_{M1}^{QRPA}(\epsilon_{\gamma}) + C e^{-\eta \epsilon_{\gamma}} \end{aligned}$$

• upper limit (0lim⁺)

$$f_0 = 5 \cdot 10^{-10} \text{MeV}^{-4}$$
, $\epsilon_0 = 5 \text{MeV}$,
 $C = 3 \cdot 10^{-8} \text{MeV}^{-3}$, $\eta = 0.8 \text{MeV}^{-1}$

• lower limit (0lim⁻)

$$f_0 = 10^{-10} \text{MeV}^{-4}$$
, $\epsilon_0 = 3 \text{MeV}$,
 $C = 10^{-8} \text{MeV}^{-3}$, $\eta = 0.8 \text{MeV}^{-1}$

Impact on radiative neutron capture

rms/datum		
	$\langle \Gamma_{\gamma} \rangle$	$\langle \sigma \rangle$
0lim ⁻ (Comb)	0.88	1.07
$0lim^{-}(CT)$	0.74	0.95
0lim ⁺ (Comb)	1.02	1.30
$0lim^+(CT)$	0.90	1.15
GLO(Comb)	0.48	0.61
GLO(CT)	0.38	0.53

Impact on the radiative capture

Deformation dependence of the low-energy limit

K. Sieja and S. Goriely, Acta. Phys. Pol. B (2020) 535

- no simple deformation dependence with all nuclei included
- further systematic CI studies to characterize the upbend
- benchmark study QRPA/CI with the same Hamiltonian now in progress

Direct capture studies using CI input

$$\sigma^{DC}(E) = \sum_{f=0}^{x} S_f \sigma_{J_f^{\pi}}(E)$$

- crucial observables: low energy levels and their spectroscopic factors
- E1,M1,E2 transitions
- optical potential

Systematic CI calculations (50 neutron-rich targets from mass 38 to 88) using well-established and newly developed interactions:

• SDPF-U for *sdpf* nuclei

F. Nowacki and A. Poves, Phys. Rev. C79 (2009)

014310

LNPS for *fpgd* nuclei

S.M. Lenzi et al., Phys. Rev. C82 (2010) 054301

 LNPS+gds for nuclei towards ⁷⁸Ni

K. Sieja, unpublished

Ni78-II for nuclei above ⁷⁸Ni

K. Sieja et al., Phys. Rev. C88 (2013) 034327

Real Compare global theoretical approximations for spectra and S_f to Cl results in unknown nuclei

Direct capture rates using CI results ${}^{64}Ni(n, \gamma){}^{65}Ni$

Direct capture vs resonant capture

- factor 10 difference after passing N = 50 shell closure
- largest discrepancies between models in triaxial nuclei: new model of level densities under way
- different prescription for S(E) used to reduce inter-model differences

K. Sieja and S. Goriely, Eur. Phys. J A57 (2021) 110

CI studies of spectroscopy of fission fragments

High precision, semi-empirical interactions: 2009-2015: Ni78-I Since 2015: Ni78-II

- New estimate of proton f_{5/2}-p_{3/2} splitting in the core
- New fit of proton-proton interaction for N=50 isotones

Nuclei above ⁷⁸Ni

 Structure of Sr, Zr nuclei near shape change (N=60)

K. Sieja et al., Phys. Rev. C79 (2009) 064310; K. Sieja, Universe 8 (2022) 23, PRC104 (2021) 064309

• Isomers and medium-spin structures of ${}^{95}\text{Y},\,{}^{91-95}\text{Rb},\,{}^{92-96}\text{Sr}$

PRC 85 (2012) 014329, PRC79 (2009) 024319, PRC82 (2010) 024302, PRC79 (2009) 044304

- Collectivity and j-1 anomaly of ⁸⁷Se PRC88 (2013) 034302
- β-decays of Ga nuclei and structure of N = 51 - 54 isotones
 PRC88 (2013) 047301, PRC88 (2013) 044330, PRC88
 (2013) 044314, PRC96 (2017) 044320
- Magnetic moments of ⁸⁶Kr, ⁸⁸Sr, structure of Kr nuclei
 PRC 80 (2014) 064305, PRC95 (2017)064302, PRC94 (2016) 054323, PRC 94 (2016) 044328
- Collectivity of N = 52, 54 nuclei
 PRC88 (2013) 034327, PRC92 (2015) 064322, PRC95 (2017) 051302R, PRC96 (2017) 011301R

CI spectroscopy of fission fragments

B.M. Nyako et al, PRC104 (2021) 054305, PRC103 (2021) 034304, PRC100 (2019) 054331

 Satisfactory (*rms* = 200keV) description of proton-neutron multiplets in odd-odd nuclei: ^{86,88}Br, ⁹⁰Rb.

M. Czerwinski et al., PRC95 (2017) 024321, PRC93 (2016) 034318, PRC94 (2016) 044328

Semi-empirical interaction: NL3OP

- Seniority isomers in heavy tins G.S. Simpson, Phys. Rev. Lett. 113 (2014) 132502
- Prediction of γ-collectivity above ¹³²Sn K. Sieja, Acta Phys. Pol.B247 (2016) 883;
 W. Urban, K. Sieja et al, PRC93 (2016) 034326
- Evolution of γ bands at N = 86
 H. Naidja et al, PRC95 (2017) 064303

CI versus Beyond Mean-Field Approach

Standard CI approach:

- Valence space
- Spherical SD basis
- Exact diagonalization

- Advantage: all type of correlations
- Inconvenience: huge dimensionality

$$dim = {D_\pi \choose Z} {D_
u \choose N}$$
 (up to 10^{12})

Beyond mean-field approach:

Deformed Hartree-Fock (HF) basis

(quadrupole, octupole,...)

- Angular momentum projection
- Configuration mixing within the generator coordinate method

- Selection of physically important HF states: minimization technique
- D. D. Dao, F. Nowacki, PRC 105, 054314 (2022)

Application: superheavy nuclei ^{252,253,254}No

Angular Momentum Projection (AMP)

19/21

Application: superheavy nuclei ^{252,253,254}No

Comparison with experimental data D. D. Dao, F. Nowacki, PRC 105, 054314 (2022)

- Systematics of heavy nuclei with DNO-SM approach: Fm, Rf, U (D. Dao, IPHC)
- Developments of DNO-SM approach to describe dipole transitions (D. Dao, IPHC)
- CI studies of M1 strength functions: low energy behavior and its relation with level densities and deformation (P. Kumar, GSI)
- CI benchmark of other many-body methods: CI vs QRPA for strength functions (W. Ryssens, Brussels)
- Calculations of (n, γ) cross sections with CI input vs Hauser-Feshbach model

<u>Thanks to:</u>

IEA project "Radiative Neutron Capture": collaboration with ULB Brussels