

Different kinds of DM, and synergies

https://www.nature.com/articles/nphys4049 adapted from The Dark Matter Scientific Assessment Group

Many hypotheses for dark matter

\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / workflow needs
\rightarrow many different data / result sharing policies

https://www.nature.com/articles/nphys4049 adapted from The Dark Matter Scientific Assessment Group

Many hypotheses for dark matter

\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / workflow needs
\rightarrow many different data / result sharing policies
one of many models predicting Weakly Interacting Massive Particles (WIMP)

Indirect
Detection

Direct
Detection

Colliders

Astrophysics

TheoryWell studied models, established complementarityWIMP-like models not yet completely excluded
Centatively take WIMPs as Test Science Project "grounding assumption" Caterina Doglioni - ESCAPE Meeting - 27/02/2020

ESCAPE

https://www.nature.com/articles/nphys4049 adapted from The Dark Matter Scientific Assessment Group

erc

Many hypotheses for dark matter
\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / workflow needs
\rightarrow many different data / result sharing policies
one of many models predicting Weakly Interacting Massive Particles (WIMP)

Diagram only representing collider and direct detection
Differences in collaboration variety and size
(1) Differences in data volumes:

- Colliders: "Big Data" volumes (>> PB)
- DD: smaller data volumes (~TB/PB)
- Synergies in statistical analysis and interpretation of results
Different modus operandi for indirect detection
Collaborations e.g. Fermi release data for general use ("observatory mode"), but also perform high-
C. Tunnell: Area corresponds to number of people based on mostrecent publication from any experiment that has published scientific papers in the lasttwo years. This relied on Inspire-HEP. See gistfor calculation notes. 16/ March/2019
profile analyses themselves

(Different) end-to-end WIMP analysis workflows

Simplified abstraction of workflows to fit in this slide, happy to receive feedback!

(Different) end-to-end WIMP analysis workflows

Generation \& simulation of events

Analysis of events/ distributions (including background subtraction, background estimation, statistical analysis)

Combination of results

with other searches/
experiments

Interpretation of results

Comparison of results
with other searches /
experiments

(Different) end-to-end WIMP analysis workflows

 universitet

(Different) end-to-end WIMP analysis workflows

 UNIVERSITEThttps://arxiv.org/abs/1704.03910

ESCAPE

Generation \& simulation of events

Caterina Do

(including reconstruction \&

calibration)

Data processing calibration)

LUNDS UNIVERSITET subtraction, background estimation, statistical analysis)

Analysis of events/ distributions
(including background

(Different) end-to-end

(Different) end-to-end WIMP analysis workflows Combination of results with other searches/ experiments

Interpretation of results

Comparison of results

with other searches /
experiments

Challenges for Test Science Project

Not possible to find a one-size-fits-all solution in either case...so work in parallel

Idea (not original, see DANCE workshop): review what is done by various collaborations, finding points of contact

Follow updates to CERN-wide data sharing policies (http://opendata.cern.ch)

Benefit from HEP Software Foundation

 as platform to understand shared solutions for data processing challenges \& interactions with ESCAPE software catalogue

Start working on test "generic DM search": "

data analysis \& data preservation

- Preserve workflow \& analysis code with RECAST AtLAs Note, docs and REANA
- Built around the idea of containerized workflows
- Preserve likelihood with pyhf zenodo, docs
- Discussions ongoing with Fermi data analysers

interpretation of results

- Deposit digitized data \& likelihoods in HEPData
- Include LHC measurements with CONTUR
- Could use GAMBIT (\& DDCalc) for combinations " - See next slide for more

Many DM discussions, from Granada to the ApPEC-ECFA-NuPECC JENAS meeting held in Orsay in October 2019

- Talk on ESCAPE (G. Lamanna) in plenary programme
- HEP Software Foundation meeting on possible software synergies

ECFA NuPECC ApPEC		
COMMITTEES	Home This first Joint ECFA-NuPECC-ApPEC Seminar (JENAS) jointly organized by LAL, IPNO, IRFU and LPNHE will be held from October 14 to October 16, 2019 in Orsay.	contactus
LOCAL ORGANIING COMMITTE APPEC.NUPECC.ECFA ORGANZIIG BOARD		POSTER
		JENAS-2019

JENAS prompted a new initiative centered around dark matter: https://indico.cern.ch/e/iDMEu, also featured in ESCAPE newsletter

- iDMEu aiming to build a discussion platform to facilitate collaboration of existing groups/efforts
- Dark Matter Test Science Project targeting data, software and tools sharing where necessary/useful
- Points of contact between iDMEu and TSP:
- participation of DM community to software catalogue
- help with common repositories of data and final results (e.g. versioning)
- e.g. DMTools, DM Limit Plotter

Collected from chats with members of DM community

- It is our duty as scientists to make our research FAIR

But do we (PIs) / the system (funding agencies) offer sufficient reward?
A concern of many: maintaining code is necessary but is often done on a voluntary basis
. Need a healthy system of incentives coming from within the researcher community
How can the DM community interface itself effectively with the Software Catalogue and the other ESCAPE WPs?

- See dedicated discussion, and input from HEP Software Foundation

How does ESCAPE interface itself with other entities that support/develop DM research / open science in astronomy and astrophysics?
E.g. ESA, http://www.esa.int/About_Us/Digital_Agenda/Open_Science

How can ESCAPE reach out to researchers? (today's discussion)

Crounding assumption as an "easy" DM case: WIMP dark matter

- Not exhaustive in terms of DM hypotheses, but well studied (collider, DD, ID, theory, astrophysics)
- Idea is to build on work already done/planned to create a TSP prototype
(1) Will expand of on other kinds of DM / other experiments laterbut we can work in parallel if there is interest and critical mass!
- In the process of collecting information

Collider community (ATLAS, CERN) on board, ID combination work ongoing
(C) Need more input from non-collider community: direct detection, astrophysics, theory

- Who in turn need more input from ESCAPE (discussion points)
- Start having regular discussions once main players identified
- Happy to receive input on how to do so as non-ESCAPE members

European Science Cluster of Astronomy

Talk at EPS-HEP / ECFA session 2019, CERN EP Newsletter

For more chances to discuss...

HEP Software Foundation

Worldwide LHC Computing Grid
HSF/WLCG workshop Lund University, Sweden

Jointly organised between the HEP Software Foundation and the Worldwide LHC Computing Grid, the focus of this workshop is the challenge of adapting our software and computing infrastructures to increased data rates, new computing technologies and facility evolution. All of this is targeted to maximise the physics opportunities from future upgrades and new facilities.

The workshop will take a forward look at key topics for software and computing, reviewing progress, looking at new approaches, and discussing opportunities and challenges. There will be plenty of time for discussion and the development of R\&D ideas that should be explored.

The workshop is open to everyone in the field, from LHC experiments to the intensity frontier, dark matter, astroparticle and other data intensive sciences. Participation of Early Career Researchers is particularly welcome.

©CatDogLund, she/her http://www.hep.lu.se/staff/doglioni/

Different kinds of DM, and synergies

https://www.nature.com/articles/nphys4049 adapted from The Dark Matter Scientific Assessment Group

Many hypotheses for dark matter

\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / result sharing policies
\rightarrow many different data / workflow needs
Dark photon portal model

ESCAPE

https://www.nature.com/articles/nphys4049 adapted from The Dark Matter Scientific Assessment Group

Different kinds of DM, and synergies

Many hypotheses for dark matter

\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / result sharing policies
\rightarrow many different data / workflow needs
Constraints from astrophysics

Different kinds of DM, and synergies

Many hypotheses for dark matter

 adapted from The Dark Matter Scientific Assessment Group
\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / result sharing policies
\rightarrow many different data / workflow needs
Axion models

ESCAPE

https://www.nature.com/articles/nphys4049 adapted from The Dark Matter Scientific Assessment Group

Different kinds of DM, and synergies

Many hypotheses for dark matter

\rightarrow many ways to detect it
\rightarrow many different experiments
\rightarrow many different data / result sharing policies
\rightarrow many different data / workflow needs
Models relevant for GW experiments
 Dark Matter Candidate Mass $[\mathrm{eV}]$
Caterina Doglioni - ESCAPE Meeting - 27/02/2020

Combination of ID results

