The dusty torus surrounding NGC 1068's active nucleus observed with GRAVITY/VLTi

Pierre Vermot 3rd year PhD student LESIA – Paris Observatory Under the supervision of Yann Clénet and Damien Gratadour

Active Galactic Nuclei

- Many different observational features depending on the target
- All those difference explained by the unified model
- One kind of object, different positions of the observer
- A supermassive black hole and its accretion disk surrounded by an obscuring structure: *the dusty torus*

26/02/20

GRAVITY/VLTi

- Interferometer at the VLTi
- Combines the beams of the four 8m telescopes
- K band (2.0 2.4 um)
- Very high angular resolution : up to 4 mas
- Does not provide images
- Provides fringes
- Fortunately, *fringes provide a measurement of the Fourier Transform of the image*

Interferometry 101

coverage overimposed to 2D model generated visibilities

Hypothetical image of an astronomical object (elongated gaussian)

Fourier transform of the image and GRAVITY sampling : uv plane

The observation

UV plane of our observation

Visibility points of our observation (i.e. norm of the FT)

How to deal with visibility points?

Visibility points of our observation (i.e. norm of the Fourier Transform) • Directly attempt to reconstruct an image from the visibility points (Pfuhl+2020)

• Fit simple geometrical model to the visibility points (Raban+2009)

• Generate images from an AGN simulation to be compared with the visibility (this work)

How to deal with visibility points?

Visibility points of our observation (i.e. norm of the Fourier Transform) • Directly attempt to reconstruct an image from the visibility points (Pfuhl+2020)

• Fit simple geometrical model to the visibility points (Raban+2009)

• Generate images from an AGN simulation to be compared with the visibility (this work)

26/02/20

What can be constrained?

Best model

Best model

- Sublimation radius: R = 0.22 + - 0.02 pc
- Inclination: I =52 +/- 6°
- Position Angle: PA = $-46 + / -7^{\circ}$
- Opening angle: A_{1/2} = 13 +/- 8°
- Foreground extinction: $A_v = 70$
- Background: Blackbody at T ~ 640 K

26/02/20

Conclusions

- GRAVITY/VLTi is able to fully resolve the hot dust in NGC 1068's nucleus
- We have good constraints on the geometrical properties of the structure
- The hot dust is not responsible for the obscuration of the nucleus
- There is a misalignement with the observed maser disk:
 - Either both are part of a *warped* parsec scale disk
 - Either we are looking at two embedded rings

Thank you for your attention

