

FIRST: direct imaging of exoplanets with interferometry

Elbereth conference

28/02/2020

Kevin Barjot

Advisors: Sylvestre Lacour & Elsa Huby

1

71(<u>R</u>)8"

β Pictoris

Long baseline interferometry

Angular resolution: from λ/D (diffraction limit) to λ/B

71(<u>R</u>)84

Fibered Imager foR a Single Telescope

Angular resolution down to $\lambda/2D$

71(<u>R</u>)ST

Pupil masking and remapping 71(<u>R</u>)S-OPD λ 4.2mm 10mm 0 16mm Lens: 250µm 0 600µm **Fibre** 5 5µm Iris AO

Observations

0.2

0.0

600

625

650

675

700

Wavelength (nm)

725

750

 Intensity ratio between the components, as a function of wavelength

6

800

775

71(<u>R</u>)84

28/02/20

Integrated Optics principle

20 outputs

Cool technology

New output data

Baselines are
independently recombined
Fringes are coded on a
few pixels (instead of a few
hundreds) → increased
sensitivity

- Fringes are temporally

Integration at the Subaru telescope has started...

ME!

After the characterization of the instrument in the lab, Integration at Subaru in Hawaii!

Thank you!

My PhD project (not displayed)

- Characterization of the integrated optics chip in the lab (Meudon)
- Software development to control the instrument (delay lines, fringe modulation...)
- Integration at the Subaru telescope
- Development of the data reduction pipeline for astrophysic data
- On-sky data
- Data analysis: substellar companion detection?