Water ice clouds in the Martian atmosphere during the 2018 Global Dust Storm

Aurélien Stcherbinine, M. Vincendon, F. Montmessin

Elbereth Conference - Paris, 28 February 2020

- Cross-dispersion echelle spectrometer
- Dedicated to Solar Occultation
- Cover 0.3 μm per measurement among the 2.3 – 4.2 μm spectral range

 $\mathsf{Colors} \leftrightarrow \mathsf{particle} \ \mathsf{size}$

Elbereth Conference

- 1 single ACS-MIR observation
- 3 μm band depth at each observed altitude below the haze top

	Data analysis 00●00		
N		с I	 2

Retrieving the particle size from the spectral shape?

• Vertical inversion for all wavelength $\rightarrow k_{\text{ext}}$ spectra at each observed altitude.

	Data analysis 00●00	
D		 2

Retrieving the particle size from the spectral shape?

► Vertical inversion for all wavelength → k_{ext} spectra at each observed altitude.

 $k_{\text{ext}}(3.2 \ \mu\text{m}) \ k_{\text{ext}}(3.2 \ \mu\text{m}) - k_{\text{ext}}(3.4 \ \mu\text{m})$

Water ice clouds identification & Particle size retrieving

- After the vertical inversion, we can fit spherical water ice particles extinction opacity models C_{ext} on the observed k_{ext} spectra.
- The water ice fit is considered as relevant if it verifies :

$$\left(\chi^2_{\nu,\,\text{ice}} \leq 9\right) \& \left(\chi^2_{\nu,\,\text{ice}} \leq \frac{\chi^2_{\nu,\,\text{dust}}}{4}\right) \& \left(\chi^2_{\nu,\,\text{dust}} > 1\right)$$

Data analysis 0000●	

The ACS-MIR dataset

Distribution of the ACS-MIR observations in the *grating position 12* in terms of latitude, longitude, and Solar longitude.

	ion Data analysis		
	00000	00000	
T 1			

The ACS-MIR dataset

Beginning of the 2018 global dust storm

Distribution of the ACS-MIR observations in the *grating position 12* in terms of latitude, longitude, and Solar longitude.

	Data analysis 00000	First results ●0000	
_			

$3 \ \mu m$ atmospheric absorption

Data analysis 00000	First results 0●000	

Water ice clouds identification

Data analysis 00000	First results 0●000	

Water ice clouds identification

28/02/2020 10 / 15

Data analysis	First results	
00000	0000	

Water ice clouds identification

28/02/2020 11/15

Elbereth Conference

28/02/2020 11/15

Elbereth Conference

Elbereth Conference

Links with latitude and local time?

28/02/2020 12/15

Particle size altitude dependence

Particle size decrease when getting higher.

Particle size altitude dependence

Particle size decrease when getting higher.

	Data analysis		Conclusion	
00	00000	00000	0	
C				

Summary

- Use of ACS-MIR SO observations to monitor the evolution of the atmospheric water ice spectral signature around 3 μm, before and during the 2018 global dust storm.
- ▶ Inversion of optical depth to retrieve local extinction of aerosols.
- Fit of the particles size with a spherical water ice particles model : identification and characterization of water ice clouds.

	Data analysis	First results	Conclusion
	00000	00000	⊙●
What's next?			

- Apply the algorithm to an **entire Martian year**.
- Searching for the effects of the **season** and **daily cycle**.
- ► Analysis of **limb** and **nadir** observations (OMEGA/MEX).

Continuum extraction

Continuum extraction

Continuum extraction

Appendix - Profiles

Appendix - Large particles

Profiles - Southern hemisphere

Appendix - Profiles

Appendix - Large particles

Profiles - Northern hemisphere

High-altitude large particles fitting

High-altitude large particles fitting

5/5