Visible and Near-Infrared spectral analysis of several hollows on Mercury

Océane Barraud¹, Alain Doressoundiram¹ and Sébastien Besse².

¹ LESIA, Observatoire de Paris, Meudon, France ² ESA-ESAC, Madrid, Spain

Thesis: Nature des épisodes volcaniques à la surface de Mercure.

Why Mercury ?

- High bulk density
- Magnetic field
- Volatile species
- Compressional features

Introduction

Hollows spectral analysis

Bright crater floor deposit (BCFDs)

Robinson et al., (2008)

High resolution images obtained by MESSENGER \rightarrow BCFDs composed of several small depressions

Blewett et al., (2011)

Introduction

Figures: Hollows on Scarlatti impact crater ring.

NASA/Johns Hopkins University Applied Physics Laboratory /Carnegie Institution of Washington

- Fresh appearance
- Small depressions surrounded by bright halo
- Shallow with flat floor

Introduction

Hollows

Geological settings:

- Low reflectance material
- Crater/basin floors, walls, terraces, central peaks, ejectas
- Close to explosive volcanism deposits

Blewett et al., (2011)

channel is a measure of overall albedo (34). Hollows (yellow arrows) appear bright blue; the large depression (red arrow) is a likely volcanic vent and the source of the reddish pyroclastic deposit. Inset is image EN0211416219M (53 m/pixel), showing details of the bright depressions. (E) High-reflectance depressions on the floor, walls, and rim of a partially degraded 25-km-diameter impact crater. Image EN0213154023M, 149 m/pixel, 23.3° N, 179.4° E. (F) Portion of a morphologically fresh 15-km-diameter (inset) with bright material on the upper wall and hollows on a wall slump. Image EN0218374376M, 18 m/pixel, 66.5° N, 153.2° E.

Introduction

Hollows spectral analysis

Hollows spectral features

Introduction

Hollows spectral analysis

Hollows spectral features

Lucchetti et al., (2018)

- Possible absorption band between 558 and 828 nm (4%)
- Presence of sulfides ?

Introduction

Limitation of the spectral analysis

	Spatial resolution	Spectral resolution	Spectral range
MDIS*	8 m to 7 km per pixel	around 60 nm	433 - 1012 nm
MASCS**	0.1*3 km to over 6*7 km	5 nm	300 - 1400 nm

**MASCS: Mercury Atmospheric and Surface Composition Spectrometer.

Hollows spectral analysis

Hollows observations with MASCS

Hollows observations with MASCS

 Spatially resolved hollows

Hollows spectral analysis

Hollows spectra

Hollows spectral analysis

Hollows spectra

Hollows spectral analysis

Hollows spectral features ?

• Continuum removed spectra (113)

Hollows spectral analysis

Lack of absorption features:

- 1. Calibration errors In MDIS or in MASCS
- 2. No sufficient concentration of pure sulfides

 \rightarrow 75 % of pure sulfides needed (Izenberg et al., 2014)

3. Diversity in hollows material

Vilas et al., (2016)

