

PREPARING EXOPLANET TRANSIT SPECTROSCOPY OBSERVATIONS WITH JAMES WEBB SPACE TELESCOPE

MARINE MARTIN-LAGARDE | PIERRE-OLIVIER LAGAGE (CEA) | GIUSEPPE MORELLO (CEA)

ELBERETH | PARIS | FEB. 2020

Orbital phase variations

Cyclical variations in brightness of planet

TRANSIT SPECTROSCOPY

EXOPLANETS' ATMOSPHERE

- Learn about the nature and diversity of exoplanets
- Understand the physics and chemistry at work (not present in the solar system / early solar system)
- Constraint planet formation (metallicity, C/O)
- Ultimately search for bio-signatures (eg. O_3)

	Molecule	$\Delta v = 2B_0$ cm ⁻¹	$\lambda (S_{\text{max}})$ 2–5 µm	s_{\max} cm ⁻² am ⁻¹	<i>R</i> 2–5 μm	λ (S _{max}) 5–16 μm	s_{\max} cm ⁻² am ⁻¹	<i>R</i> 5–16 μm
	H ₂ O	29.0	2.69 (v ₁ , v ₃)	200	130	6.27 (v ₂)	250	55
	HDO	18.2	$3.67(v_1, 2v_2)$	270	150	7.13 (v ₂)		77
	CH ₄	10.0	3.31 (v ₃)	300	300	7.66 (v ₄)	140	130
	CH ₃ D	7.8	4.54 (v ₂)	25	280	$8.66 (v_6)$	119	150
C	NH ₃	20.0	2.90 (v ₃)	13	170	10.33	600	50
			$3.00(v_1)$	20		$10.72 (v_2)$		
	PH ₃	8.9	$4.30(v_1, v_3)$	520	260	8.94 (v ₄)	102	126
						$10.08 (v_2)$	82	110
	СО	3.8	4.67 (1-0)	241	565			
	CO ₂	1.6	4.25 (v ₁)	4100	1470	14.99 (v_2)	220	420
	HCN	3.0	3.02 (v ₃)	240	1100	$14.04 (v_2)$	204	240
	C_2H_2	2.3	3.03 (v ₃)	105	1435	13.7 (v5)	582	320
	C_2H_6	1.3	3.35 (v7)	538	2300	12.16 (v12)	36	635
C	03	0.9				9.60 (v ₃)	348	1160

Table 5 Main molecular signatures and constraints on the spectral resolving power. Δv is the spectral interval between two adjacent J-components of a band. S_{max} is the intensity of the strongest band available in the spectral interval. *R* is the spectral resolving power required to separate two adjacent J-components

Tinetti et al. AAR 2013

AIM

cea

JWST-MIRI SIMULATIONS | SYSTEMATICS | TRANSITING EXOPLANETS

AIM

cea

¢ cnes

JWST-MIRI SIMULATIONS | SYSTEMATICS | TRANSITING EXOPLANETS

AIM

cea

¢ cnes

POST-PROCESSING IMAGES FOR SYSTEMATICS

From ground tests on MIRI detectors, we selected the systematic effects likely to be important for transit spectroscopy observations to include in MIRISim results as post-treatment:

Response Drift | Idle Recovery | Anneal Recovery

AIM

cea

POST-PROCESSING IMAGES FOR SYSTEMATICS

From ground tests on MIRI detectors, we selected the systematic effects likely to be important for transit spectroscopy observations to include in MIRISim results as post-treatment:

Response Drift | Idle Recovery | Anneal Recovery

POST-PROCESSING IMAGES FOR SYSTEMATICS

From ground tests on MIRI detectors, we selected the systematic effects likely to be important for transit spectroscopy observations to include in MIRISim results as post-treatment:

Response Drift | Idle Recovery | Anneal Recovery

$$\dot{S}_{corrected}(t) = \dot{S}_0 + \left(c \times e^{-\frac{t}{\gamma}}\right)$$

AIM CEA CRES E

POST-PROCESSING IMAGES FOR SYSTEMATICS

From ground tests on MIRI detectors, we selected the systematic effects likely to be important for transit spectroscopy observations to include in MIRISim results as post-treatment:

Response Drift | Idle Recovery | Anneal Recovery

$$\dot{S}_A(t) = b_1 \times e^{-\frac{t+t_A}{\beta_1}} + b_2 \times e^{-\frac{t+t_A}{\beta_2}}$$

RESULTS

JWST-MIRI SIMULATIONS | SYSTEMATICS | TRANSITING EXOPLANETS

AIM

cea

cnes

RESULTS

MARTIN-LAGARDE | ELBERE PARIS | FEB. 20

JWST-MIRI SIMULATIONS | SYSTEMATICS | TRANSITING EXOPLANETS

AIM

cea

cnes

JWST-MIRI SIMULATIONS | SYSTEMATICS | TRANSITING EXOPLANETS

AIM

cea

cnes

PARIS FEB. 20

Generate detailed synthetic time-series observations of transiting exoplanets with MIRI-LRS.

· EXONOODLE

- Create time-series of exoplanetary system spectrum.
- Test of out-of-transit hypothesis induced biases in transit depth measurement.
- Release early 2020, ongoing beta-tests Martin-Lagarde et al. *in prep*

· INTRODUCTION OF SYSTEMATICS IN MIRI TSO SIMULATIONS

- Modelling with MIRI-JPL ground tests and heritage of Spitzer.
- Release 2020 Martin-Lagarde et al. *in prep*

• PERSPECTIVE

- JWST MIRI-ERS data challenge
- New effects (Latency, Detector temperature variations)

PREPARING EXOPLANET TRANSIT SPECTROSCOPY OBSERVATIONS WITH JAMES WEBB SPACE TELESCOPE

MARINE MARTIN-LAGARDE | PIERRE-OLIVIER LAGAGE (CEA) | GIUSEPPE MORELLO (CEA)

MARTIN-LAGARDE | ELBERE PARIS | FEB. 202