High angular resolution study of the Super Stellar Cluster population in IRAS 17138-1017

Nguyen Tung Lam, Damien Gratadour, Daniel Rouan, Lucas Grosset

École Doctorale d'Astronomie & Astrophysique d'île-de-France

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Super Star Cluster

Super Star Clusters (SSCs), or Young Massive Clusters (YMCs):

- Young (<100 Myr), massive (\gtrsim 10⁴ M_o), compact (\gtrsim 10³ M_o pc⁻³ at core)
- Often found in interacting galaxies, especially (ultra) luminous infrared galaxies ((U)LIRGs; $log(L_{IR}/L_{\odot}) > 11$)
- Manifestation of extreme star formation $(>1000$ SFR_{MW})
- First stage enshrouded in dust, prominent in infrared
- Remain poorly understood due to large distance to ULIRGs (-10^2 Mpc)

Nearby SSC analogue R136 - HST

- Adaptive optics (AO) or space telescope (e.g. JWST) required to resolve
- Open questions:

what are their global characteristics: mass function, luminosity function, stellar content, dust content, gas content and dynamics, supernovae rate…, **Whether they are precursors to globular clusters**

IRAS 17138-1017

- A highly obscured starburst LIRG in a late stage of interaction (log(L_{IR}/L_{\odot})=11.42, $D_1 = 75.9$ Mpc)
- Imaging data in J, H and K_s band obtained using Gemini Multi-Conjugate Adaptive Optics System (GeMS)/ Gemini South Adaptive Optics Imager (GSAOI) (pixel scale 0.02″)
- Source extraction and PSF photometry:

StarFinder, an IDL code developed for the analysis of crowded fields in AO images (Diolaiti et al. 2000)

• Cluster selection:

Cross-matching 3 bands, comparison with a nearby control field, star count from Besançon model (Robin et al. 2003), GalaxyCount (Ellis & Bland-Hawthorn 2007) and visual inspection

 \Rightarrow 66 SSC candidates detected

Color – Color/Magnitude Diagram

• Starburst99 (Leitherer et al. 1999, 2014) evolutionary synthesis model (∿):

Simple stellar population (SSP) 10⁶ M_o Kroupa (2008) IMF 0.1 M_o -100 M_o, solar metallicity $(Z = 0.014)$, instantaneous burst, stellar and nebular emission

- Sources detected in the control field $(*)$
- Average colors and standard deviations of 2MASS galaxies (Jarrett et al. 2003) (†)
- Calzetti et al. (2000) extinction law for starburst galaxy (\ge): R_v = 4.05
- Reddening-independent color index Q = $(H - K_S) \times E(H - K_S) / E(J - H) \times (J - H)$
- Most of SSCs $\left(\bullet \right)$ are very young $\left(< 5$ Myr)
- Age-reddening degeneracy occurs at evolved ages
- Some outliers could not be explained by r Dbserva.ervolutionary model

4

Color and SED Fitting

• Color fitting: minimize the quantity to derive age τ , extinction A_V (mass M derived from Starburst99 M/L)

$$
\chi^{2}(\tau, A_{V}) = \sum_{C=J-H,H-K_{S}} \frac{(C_{obs} - C_{SB99})^{2}}{\sigma_{C}^{2}}
$$

• SED fitting: minimize the quantity to derive age τ , extinction A_V and mass M

$$
\chi^{2}(\tau, A_{V}, M) = \sum_{\lambda=J,H,K_{S}} \frac{(m_{obs,\lambda} - m_{SB99,\lambda} + 2.5 \log \frac{M}{10^{6}})^{2}}{\sigma_{\lambda}^{2}}
$$

Two methods provide consistent results, excluding an outlier 54 SSC candidates left

5

Age Distribution and Star Formation History

• Age distribution reveals 2 clear peaks at τ = 2.8 and 4.5 Myr

bservatoire

 $-LESIA$

- Cluster disrupts over time due to interaction with giant molecular clouds in their vicinity, given high surface density of IRAS 17138-1017
- Cluster formation efficiency Γ = CFR/SFR = $(\Sigma M_{\text{cluster}}/\Delta \tau)/\text{SFR} \approx 33.4\%$ for τ = 1 – 10 Myr as expected for starburst galaxies and Kruijssen (2012) Γ – Σ_{SFR} relation, assuming Σ_{SFR} = 89 M $_{\odot}$ yr⁻¹ kpc² (Piqueras López et al. 2016)
- Lower Γ = 17% for τ =10 100 Myr (Randriamanakoto 2015) suggests *infant mortality*: rapid disruption during the first 10 Myr due to gas expulsion

Extinction

- Frequency distribution of the extinction (right): whole sample (black), 2.8 Myr burst (blue), 4.5 Myr burst (red). Top: absolute numbers. Bottom: relative numbers. Error bars assume Poisson uncertainties
- 2.8 Myr burst has less extinct SSCs than 4.5 Myr burst, despite hosting 2 most extinct ones
- First burst has consumed/expelled a part of the interstellar medium (ISM) or triggered the second one in a less dense component of the giant molecular cloud (GMC)

l'Observatoire LESIA

Cluster Luminosity Function

- Luminosity function for the entire sample (black), $\tau \leq 3.7$ Myr (blue), τ > 3.7 Myr (red) plotted. Red and black dash lines correspond to linear regressions (dN/dL \propto L^a). Error bars assume Poisson uncertainties
- \cdot α = -1.44 (entire sample),

 α =-1.28 ($\tau \leq 3.7$ Myr), α =-1.55 ($\tau > 3.7$ Myr)

• In the lower end of $a \approx -1.87+0.3$ for

- SSCs in (U)LIRGs (Randriamanakoto et al 2013, Vavilkin 2011, Miralles-Caballero et al. 2011, Adamo et al. 2010, 2011)
- Flatter than $\alpha \approx -2.2 \pm 0.3$ for spiral or non-LIRG star forming galaxies (Elmegreen & Efremov 1997, Gieles et al. 2006, Bastian 2008, Haas et al. 2008 and Larsen 2009)
- In case of IRAS 17138-1017, without dereddening α =-1.57 close to -1.53 and -1.64 for constant and variable bin widths respectively (Randriamanakoto et al. 2013b)

Cluster Mass Function

- Mass function for the entire sample (black), $\tau \leq 3.7$ Myr (blue), $\tau > 3.7$ Myr (red) plotted. Red and black dash lines correspond to linear regressions (dN/dM $\propto M^{\beta}$). Error bars assume Poisson uncertainties
- \cdot β = -1.58 (entire sample),
- $B=-1.48$ ($\tau \leq 3.7$ Myr), $B=-1.67$ ($\tau > 3.7$ Myr)
- Much shallower than the canonical $\beta \approx -2$ found in the literature (Krumholz et al. 2019)
- Shallower than $\beta = -1.95 \pm 0.11$ but nevertheless fall in the observed range for LIRGs in the GOALS survey (Linden et al. 2017)
- Randriamanakoto (2015) finds values of β = -1.86 and 1.61 for SSCs in IRAS 17138-1017 with $\tau \le 3.5$ Myr and 30 Myr $\le \tau \le 1$ Gyr respectively, but suffering from cluster mass overestimation and age-extinction degeneracy in B IK_s bands
- Flatter cluster mass function may originate from blending effect or *cruel craddle effect*: disruption of lower mass SSCs due to tidal shock heating l'*Observatoire* **LESIA**

9

Spatial Distribution

- Locations of the SSCs on the K_s image (left): $\tau \le 3.7$ Myr(blue), τ >3.7 Myr (red)
- Number of SSCs per ring of increasing diameter centered on the nucleus (middle): the whole sample (black), 2.8 Myr burst (blue), 4.5 Myr burst (red). Top: absolute numbers. Bottom: relative numbers. Error bars assume Poisson uncertainties
- Youngers burst populates around central region rather than peripheral one
- *Cruel craddle effect*: older clusters survive by escaping into more quiescent regions, only young clusters exist in gas-rich environment
- Cluster mass decreases over galactocentric distance (right) \Rightarrow environmentdependent cluster formation as Γ and Σ_{SFR} decrease radially 10

Modelling SSCs with MontAGN

- Dereddening using Calzetti et al. (2000) extinction law not applicable for some outliers
- Starburst99 evolutionary model considers stellar and nebular emission only
- Possible contribution of thermal emission from hot dust cocoon and scattered radiation in clumpy medium
- MontAGN (Monte Carlo for Active Galactic Nuclei) is a radiative transfer code written in Python 2.7
- Photons propagated in form of packets with polarisation, scattering, absorption, optional thermal re-emission and temperature update
- Simulations can also be launched in parallel on clusters of processors
- Highly versatile but initially optimised for simulations of AGN in the near-infrared
- Polycyclic aromatic hydrocarbons (PAHs) and fractal structuration added for SSC simulations and the servatories and the servatories of t

Model Description

- Central point source: Starburst99 simple stellar population (SSP) 10⁶ M_{o,} Kroupa (2008) IMF 0.1 M_o -100 M_o, solar metallicity (Z = 0.014), instantaneous burst, stellar and nebular emission
- Hierarchically clumped dust shell (Elmegreen 1997): 50% clumpy apart from smooth dust distribution, $R_{in} = 5$ pc $-$ 40pc, $R_{out} = 50$ pc resembling cluster evolution, $H = 5$ hierarchical levels, $N = 32$ positions per level and fractal dimension $D = 2.6$, standard dust-to-gas ratio 0.01 (Whelan et al 2011), SFE = 33% (Banerjee & Kroupa 2017)
- Dust composition: 75% silicate, 13.33% ortho-graphite, 6.67% para-graphite and 5% PAH (Draine 2011)

12

10 000 000 photon packets launched for each simulation

Simulated Spectral Energy Distribution

- Spectral energy distributions obtained with MontAGN for various sets of age τ and inner radius R_{in} of the cavity: total flux (-), dust emission (---), stellar emission (\cdots)
- At 2μ m thermal emission can play a very significant role
- 13 Thin envelope models leak out significant star light, much brighter in the isible than NIR \Rightarrow not the case of IRAS 17138-1017

Simulated Color-Color Diagram

- Color-color diagram of the simulated SSCs with various conditions of age τ and inner radius R_{in} of the cavity plotted with Starburst99 evolutionary track (∿) and Calzetti et al. (2000) reddening vector (2) . Empty (\circ) and filled (\bullet) circles represent stellar emission and total SED respectively
- Several points could not be deredenned by shifting along the reddening vector
- Significant contribution of thermal emission at $\tau \leq 5$ Myr
- Scattered light produces only a very small additional reddening

LESIA

Conclusions

- 54 SSCs in IRAS 17138-1017 identified from J, H and K_s GeMS/GSAOI images at high resolution
- Most of the clusters are very extinct and very young, distributed in two narrow age bins of 2.8 and 4.5 Myr
- Cluster luminosity and mass function follow classical power-law behavior but flatter than observed LIRGs, possibly indicating *cruel craddle effect*: lower mass SSCs produced less efficiently in very high surface density GMCs
- SSCs of youngest starburst gather in the central area, while older clusters are distributed along the spiral arms
- 4.5 Myr burst is more extinct than the 2.8 Myr burst \Rightarrow distinct episodes, causes and GMCs
- Radiative transfer models of SSCs reveal non-negligible contribution of hot dust emission in K_s band

Merci pour votre attention!