Electromagnetic radiation from wave turbulence driven by electron beams

Stellar physics (including solar physics)

Gaëtan Gauthier, Catherine Krafft, Philippe Savoini

Conference Elbereth - February, 26, 2020

Contents

1. Introduction/General context

- 1.1 Physical context
- 1.2 Waves theory (coupling and interaction)

$2. \ {\bf Electromagnetic emission with PIC code}$

- 2.1 Create conditions of EM emission
- 2.2 Simulation results

3. Analytical model of waves transformation for δn and $\mathbf{B}_0 \neq 0$

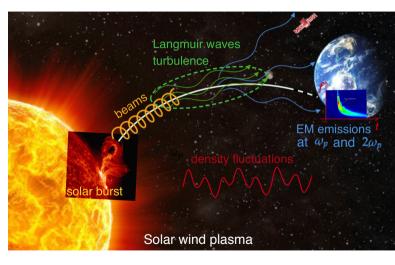
- $3.1\,$ Who did modelise it ?
- 3.2 Modification of wave coupling
- 4. Conclusions/Forthcomming

General context

Electron beams propagating in the interplanetary medium after solar eruptions or ahead of interplanetary shocks.

 \Rightarrow during their propagation, they are converted into **electromagnetic emissions**.

These beams can persist up to 1 UA through the Solar Wind (= weakly magnetized plasma with density fluctuations).



Wave coupling in homogeneous plasma

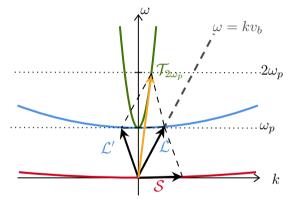
General context

• Electron beam (n_b, v_b) can excite a Langmuir wave \mathcal{L} (electrostatic) at $\omega = \omega_p$ following $\omega_p = kv_b$.

► Intense *Langmuir wave L* can decay into daughter waves:

$$\mathcal{L}
ightarrow \mathcal{L}' + \mathcal{S}$$

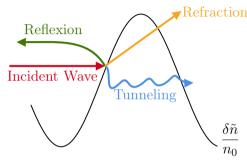
where \mathcal{L}' is a backscattering Langmuir wave and \mathcal{S} is an ion acoustic wave (electrostatic waves).



• Generation of an electromagnetic wave by three waves interaction at ω_p by fusion of $\mathcal{L} + \mathcal{S} \to \mathcal{T}_{\omega_p}$ and at $2\omega_p$ by $\mathcal{L} + \mathcal{L}' \to \mathcal{T}_{2\omega_p}$.

Case of inhomogenous and magnetized plasma

Modification of the analytical equations describing the waves.



 Density fluctuations δn modify Langmuir wave dispersion relationship:

$$\omega^2(k) = \omega_p^2 \left(1 + 3k^2 \lambda_D^2 + \frac{\delta n}{n_0} \right)$$

Thus, for density fluctuations to be large enough to cause beam Langmuir wave deresonance we require $\delta n/n_0 \geq 3k^2 \lambda_D^2$.

• Adding *ambiant magnetic fields* $(\mathbf{B} \neq 0)$:

$$\omega^2(k) = \omega_p^2 \left(1 + 3k^2 \lambda_D^2 + \frac{\delta n}{n_0} + \frac{\omega_c k_\perp^2}{\omega_p k^2} \right)$$

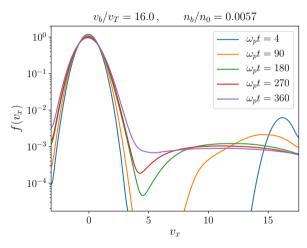
6/14

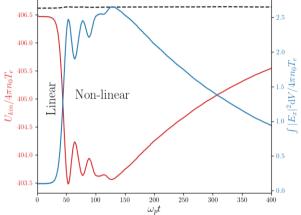
Using Smilei PIC code with *Solar Wind Physical Parameters*:

$$T_e = 200 \text{ eV},$$
 $T_i = T_e/10$
 $v_b = [10; 16] v_T$
 $n_b = [2 \cdot 10^{-2}; 5 \cdot 10^{-4}] n_0$

Maxwellian velocity distribution for background plasma at v_T and the beams at v_b .

After a long time, instability energy transfer relaxes the beam by creating a *high energy tail*.





- ▶ Observation of an exchange between kinetic and electric field energy.
 ⇒ instability generates electrostatic waves L.
 - *Linear phase* strong transfer to fields.
 - ▶ *Non-linear phase* saturation and heating of the ambiant plasma.
- In the end stage, the kinetic energy has been transmitted into thermal energies.

Waves generation – Electrostatic stage

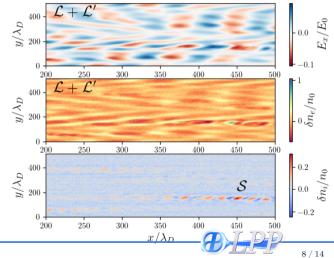
Generation of the backward Langmuir wave \mathcal{L}' .

- At the beginning (t < 50 ω_p⁻¹), instability generates primary Langmuir waves L.
- At later stage

 (100 < t < 200 ω_p⁻¹), secondary
 Langmuir waves L' propagating backward develop.
- ► At the same time, Ion acoustic waves S appear at k_S ~ 2k_L by electrostatic decay:

$$\mathcal{L}
ightarrow \mathcal{L}' + \mathcal{S}$$

 $\omega_p t = 360, \quad v_B/v_T = 16.0, \quad n_b/n_0 = 0.0057$



PIC code

Langmuir waves decay

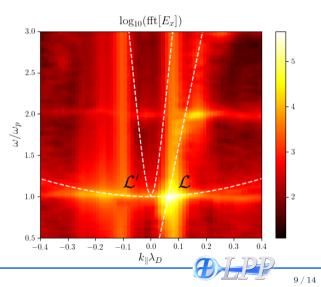
PIC code

Evolution of the \mathcal{L} and \mathcal{L}' waves (Simulation results).

- FFT(E_x) confirms the excitation of the electrostatic *Langmuir* waves \mathcal{L} at $k_{\mathcal{L}} \sim \omega_p / v_b$ by the beam.
- Presence of second Langmuir waves L' at k_{L'} < k_L due to electrostatic decay satisfying resonance conditions:

$$\begin{cases} \omega_{\mathcal{L}}(k_{\mathcal{L}}) = \omega_{\mathcal{L}'}(k_{\mathcal{L}'}) + \omega_{\mathcal{S}}(k_{\mathcal{S}}) \\ k_{\mathcal{L}} = k_{\mathcal{L}'} + k_{\mathcal{S}} \end{cases}$$

Note also the presence of the second harmonic 2ω_p.



Wave Generation – Electromagnetic emission

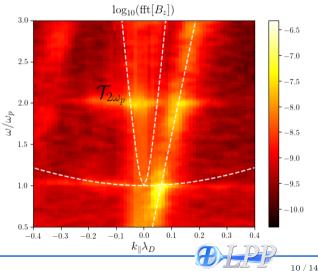
Generation of the electromagnetic waves $\mathcal{T}_{2\omega_p}$. EM waves are identified form B_z .

FFT(B_z) confirms the presence of a strong emission at ω = 2ω_p according to the EM dispersion relation.

This emission was obtained by the process of two-plasmon fusion :

 $\mathcal{L} + \mathcal{L}' o \mathcal{T}_{2\omega_p}$

 $\Rightarrow \text{Explains where the} \\ \textbf{electromagnetic emissions} \\ \textbf{observed in the Solar Wind} \\ \text{come form (with a source of} \\ \textbf{electrostatic modulations)} \\ \end{cases}$



Actions to improve the results interpretation

Analytical model

Zakharov idea: there exist different types of electron motions in plasmas [Zakharov 1972]:

- *Fast motion* (High frequency)
- *Slow motion* (Low frequency)

We assume that the slow motion is quasi-neutral $(\delta \tilde{n}_{\mathfrak{e}} \simeq \delta \tilde{n}_{\mathfrak{i}} \equiv \delta \tilde{n})$,

$$\begin{cases} n_{i} = n_{0} + \delta \tilde{n} \\ n_{e} = n_{0} + \delta \tilde{n} + \delta n_{e} \end{cases}$$

To figure out *invariants* and *Hamilton equations*, we write a hamiltonian taking into account of *density fluctuation* and an *small ambiant magnetic field* $\mathbf{B} = B_0 \hat{\mathbf{z}}$ (where $\omega_c \ll \omega_p$) as:

$$\mathcal{H} = \int \left(1 + \frac{\omega_c^2}{2\omega_p^2} + \frac{\delta\tilde{n}}{2n_0} \right) \frac{\varepsilon_0}{2} |\nabla\varphi|^2 + 3\varepsilon_0 \lambda_D^2 |\Delta\varphi|^2 + \frac{m_i n_0}{2} \left(u^2 + c_s^2 \frac{\delta\tilde{n}}{n_0} \right) \mathrm{d}V$$

Hamiltonian resolution

Analytical model

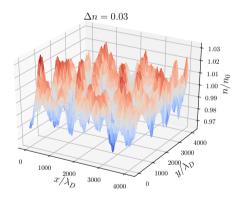
12/14

Our code solves these non-linear equations (in 2D) :

$$\nabla^2 \left(i \frac{\partial}{\partial t} + \frac{3}{2} \lambda_D^2 \omega_p \nabla^2 \right) \varphi - \frac{\omega_c}{2\omega_p} \nabla_\perp^2 \varphi = \frac{\omega_p}{2} \nabla \cdot \left(\frac{\delta \tilde{n}}{n_0} \nabla \varphi \right)$$
$$\left(\frac{\partial^2}{\partial t^2} - c_s^2 \nabla^2 \right) \frac{\delta \tilde{n}}{n_0} = \nabla^2 \varepsilon_0 \frac{|\nabla^2 \varphi|}{2n_0 m_{\rm i}} = 0$$
$$\frac{\partial}{\partial t} \frac{\delta \tilde{n}}{n_0} = -\nabla \cdot \mathbf{u}$$

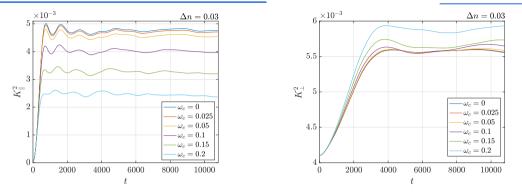
Resolution with **realistic conditions** of the Solar Wind :

- density inhomogeneities $\Delta n = \sqrt{\langle (\delta n/n_0)^2 \rangle}$ where $0 \le \Delta n \le 0.07$,
- weakly magnetized plasma $\omega_c \ll \omega_p$.



Modification of wave coupling

Analytical model



Wave energy spectrum's diffusion process along \parallel and across \perp the magnetic field,

$$K_{\perp} = \frac{\int k_{\perp} |E_k|^2 \mathrm{d}V}{\int |E_k|^2 \mathrm{d}V} \qquad K_{\parallel} = \frac{\int k_{\parallel} |E_k|^2 \mathrm{d}V}{\int |E_k|^2 \mathrm{d}V}$$

 \Rightarrow Magnetic term's impact : intensification of plasma anisotropy

13 / 14

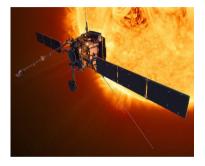
Conclusions

Conclusion :

- ▶ *PIC simulations* maked possible to follow in time the generation of different waves: \mathcal{L} , \mathcal{L}' , \mathcal{S} and \mathcal{T} (electrostatic and electromagnetic).
- EM emission processes of $2\omega_p$ are important to understand the kinetic energy transferred from electron beams to radio waves.
- Very precise measurements of *Parker Solar Porbe*, *Solar Orbiter* and *Bepi Colombo* missions could be interpreted by this type of studies.

Forthcomming :

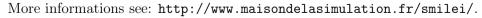
- Observation of the fundamental EM emission at ω_p (larger simulation box).
- Complete magnetic studies with PIC simulations.

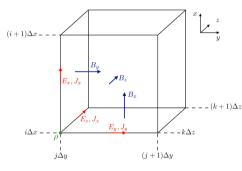


What is a PIC code ?

SMILEI is a Particle-In-Cell (PIC) code for plasma simulation. Open-source, collaborative, user-friendly and designed for high performances on super-computers, it is applied to a wide range of physics studies [Derouillat et al, 2018].

- The *kinetic description* of a collisionless plasma relies on the so-called Vlasov-Maxwell system of equations.
- The PIC method owes its name to the discretization of the distribution function f_s as a sum of N_s quasi-particles.
- Maxwell's equations are solved here using the *Finite Difference Time Domain* approach (Yee grid).





15/14