THE CEPHEID LEAVITT LAW FROM GAIA DR2 PARALLAXES OF RESOLVED COMPANIONS

Louise Breuval Observatoire de Paris, LESIA

PhD supervisor : Pierre Kervella

Elbereth Conference, 26th february 2020

GAIA PARALLAXES

CALIBRATION OF THE P-L RELATION

 \star Pulsating stars (period 2-100 days)

Instability strip in the HR diagram

★ 1908 : Henrietta Leavitt discovers that the pulsation period P of a Cepheid is linked with its magnitude M :

 $M = a \log P + b$

First calibration of the Leavitt law (Leavitt & Pickering 1912)

Henrietta Leavitt

→ precise calibration of this relation

CALIBRATION OF THE P-L RELATION

GAIA PARALLAXES OF CEPHEIDS

★ We need **very precise distances** to calibrate the PL relation

★ Over the past 20 years, only the Hubble Space Telescope (HST) provided precise geometrical paxallaxes of Cepheids :

- → Freedman et al. (2001)
- → <u>Sandage et al. (2006)</u>
- → <u>Benedict et al. (2002, 2007)</u>
- → Riess et al. (2011, 2014, 2016, 2018, 2019)

 \star GAIA satellite : first alternative to HST parallaxes.

Hubble Space Telescope (NASA, ESA)

GAIA satellite (ESA)

 \star The Gaia DR2 parallax **zero-point** is still not precisely known:

ZP _{Gaia} (mas)	Reference	Type of sources
-0.029	Lindegren et al. (2018)	Quasars
$-0.031_{\pm 0.011}$	Graczyk et al. (2019)	Eclipsing binaries
$-0.0319_{\pm 0.0008}$	Arenou et al. (2018)	MW Cepheids
$-0.035_{\pm 0.016}$	Sahlholdt & Silva Aguirre (2018)	Dwarf stars
$-0.041_{\pm 0.010}$	Hall et al. (2019)	Red giants
$-0.046_{\pm 0.013}$	Riess et al. (2018b)	MW Cepheids
$-0.049_{\pm 0.018}$	Groenewegen (2018)	MW Cepheids
$-0.053_{\pm 0.003}$	Zinn et al. (2019)	Red giants
$-0.054_{\pm 0.006}$	Schönrich et al. (2019)	GDR2 RV
$-0.057_{\pm 0.003}$	Muraveva et al. (2018)	RR Lyrae
$-0.070_{\pm 0.010}$	Ripepi et al. (2019)	LMC Cepheids
$-0.082_{\pm 0.033}$	Stassun & Torres (2018)	Eclipsing binaries

Recent estimations of Gaia DR2 parallax zero-point offset

★ Gaia DR2 parallaxes are derived assuming that the stars have a **constant color** and a **constant brightness**. (Lindegren et al. 2018, Mowlavi et al. 2018)

★ No chromaticity correction → data reduction not adapted to Cepheids !
 → Astrometric bias : some parallaxes of Cepheids may be potentially unreliable.

CALIBRATION OF THE P-L RELATION

CALIBRATION OF THE P-L RELATION

★ 28 Milky Way Cepheids with close-in resolved companions. (Kervella et al. 2019b)

Comparison of Gaia DR2 parallaxes of Cepheids with those of the companions

Proper motion of Delta Cep and its companion (Kervella et al. 2019b)

CALIBRATION OF THE P-L RELATION

CALIBRATION OF THE P-L RELATION

GAIA PARALLAXES

CALIBRATION OF THE P-L RELATION

RESCALING OF H₀

★ Riess et al. (2019) based on Cepheids : $H_0 = 74.0 \pm 1.4 \text{ km/s/Mpc}$

★ Planck Collaboration (2018):

 $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$

 \rightarrow 4 σ tension

→ could be explained by new physics beyond the standard model

★ Rescaled value based on Gaia parallaxes of Cepheids companions (Breuval et al. 2020) :

 $H_0 = 71.0 \pm 2.5 \text{ km/s/Mpc}$

CONCLUSION

★ Using companions parallaxes allows us to :

- → bypass the bias on GDR2 Cepheids parallaxes
 → calibrate the Leavitt law with non-HST parallaxes
- ★ We detected a possible offset on HST/FGS parallaxes
- \star We expect the Gaia DR3 to :
 - \rightarrow provide a precise value of the parallaxes offset
 - → provide better Cepheids parallaxes

Thank you !

louise.breuval@obspm.fr