

(1) IJCLab (Laboratoire de Physique des 2 Infinis Irène Joliot Curie) (2) CNES (Centre national d'études spatiales)

Elbereth conference

Search for GRBs with MXT telescope onboard of SVOM satellite

Speaker: Shaymaa Hussein⁽¹⁾

Authors: M. Boutelier⁽²⁾, S. Hussein⁽¹⁾, N. Leroy⁽¹⁾, M. Nicolas⁽¹⁾, A. Pérus⁽¹⁾, F. Robinet⁽¹⁾.

27-02-2020

(I) Physics of Gamma Ray Bursts (GRBS):

- Progenitors & formation.
- Physics interests.

Physics of Gamma Ray Bursts (GRBs)

- What are GRBs?
- Most energetic electromagnetic phenomena in the universe.
- GRBs progenitor candidates
- ➤ Core collapse → long burst
- ► Coalescence of 2 → short burst compact objects.
- Physics interests
- Cosmological probes.
- Study the nature of the progenitors.

• GRBs formation:

fireball model

(II) SVOM satellite overview.

SVOM satellite

- ► Space Variable Objects Monitor.
- ► A French-Chinese mission (with contribution from Germany & UK), dedicated to GRBs.
- ► To be launched end 2021. duration 3 + 2 years.

(III) Detection of GRBs with MXT

The Micro-channel X-ray Telescope (MXT)

Main characteristics:

- Soft X-ray instrument
- ► Triggered by ECLAIR telescope.
- > Light and compact: $\sim 35 \text{ kg} \otimes \sim 1.2 \text{ m}$.
- ► Focal length: $1m \& FoV: 1.1^{\circ} x 1.1^{\circ}$.

Main functions:

- ► Observe GRBs in X-rays (0.2-10 keV).
- \blacktriangleright Localize GRB afterglows (~1 arcmin).

The telescope performance rely on :

Hardware

development

- Development at CNES, CEA, UoL, MPE.
- Test at PANTER facility In MPE-Germany

MXT

Development and test at IJCLab & CNES.

(IV) MXT • Devel

(IV) MXT hardware status:

• Development & test of MXT subsystem.

MXT subsystem - optics

- X-rays have a relatively low intensity \rightarrow grazing incidence mirrors is used to collect enough photons.
- The MXT optics is based on a "Lobster Eye" geometry.
- Under the responsibility of UoL team.
- The Point Spread Function PSF: Central spot with 2 cross arms

MXT subsystem - camera

7

- Under responsibility of CEA team.
- Si based pn CCD.
- 256 x 256 75 μm side pixels.
- Associated with FEE (Front-End Electronics) based on two CAMEX.
- Excellent low-energy response.

MXT subsystem test

Test environment:

- > PANTER X-ray facility at Munich.
- ► 22/01/2020 22/02/2020

\blacktriangleright 130m long vacuum tube (Ø1 m), with the X-ray source at one end and the test chamber at other end.

MXT subsystem test

Test MXT detector:

- > Test detector performance with different temperatures (-45° , -65° , -75°).
- Characterize detector performance with different sources: Ge (9.90 keV), Cu -L (0.93 keV), C -K (0.28 keV), O -K (0.53 keV).

Test MXT optics:

- Test optics performance with different temperatures (15°, 20°, 25° , 30°).
- Test different positions of telescope relative to X-ray source.

Status:

Successful tests at PANTER (camera, optics, characterization ...).

software (SCSW).

- (IV) MXT software status:
 - MXT Camera frames simulation.
 - Development and test of onboard scientific

Simulate the input frame for SCSW:

- 1.Simulated MXT dark sequence main features:
- ► 1 frame / 200 ms.
- ► Noise (offset and sigma).
- 2. Simulated MXT observation sequence main features:
- ▶ 1 frame / 100 ms.
- Source position, light curve and energy spectrum can be tuned.
- > The photons position is shifted according to PSF.
- Photons energy added on top of noise.

SatAndLight - simulation tool

MXT onboard scientific software

Main algorithms:

- ► Camera noise characterization.
- Source localization.
- > Prepare and format science telemetry packets.
- Extract quick look products.

Camera noise characterization algorithm - development

Objectives:

Compute the pixels noise offset & threshold maps.

Method:

- ► Mean (biased by cosmic ray) & Median (Need a big memory) use the "Mean" method but set a threshold to reject outliers.
- > Offset (threshold) map is filled with noise mean (4 σ) after outlier rejection.

Status:

implemented inside the partition (SCSW) and tested with real camera frames.

Objective: test outlier rejection

Input: 2 simulated sequences with same noise distribution, and N frames. One with outlier & one without

Output: \sim same offset & threshold maps from both sequence \rightarrow ratio of offset & threshold distributions $\sim 1 \rightarrow$ robust method in case of outlier.

Camera noise characterization algorithm - test

Source localization algorithm - development

Photon reconstruction and clustering: 1. Input:

Simulated frame sequence with ~ realistic source simulation

Method:

- ► Cluster contiguous pixels.
- Identify photon from cosmic rays.
- > Photon position is given by barycentre.
- ► Fill the photon cumulative map:

Status:

Implemented inside the partition.

Photon cumulative map

Source localization algorithm - development

2. Correlation between photon map & PSF: Input:

Photon cumulative map, and PSF transformed to Fourier space.

Method:

- ► Correlation(PixY, PixZ) = $IFT[FT{Photon map(<math>PixY, PixZ$)}* x FT{PSF (PixY, PixZ)}].
- ► A light FT library must be used.
- > A desecrate Fourier transform (DFT) is implemented inside the partition.

Status:

DFT algorithm: Implemented inside the partition. Correlation: Implementation inside the partition is ongoing (implemented in prototype)

Correlation prototype results

Pixel index (Z)

For prototype: FFTW library is used to transform photon map & PSF

Source localization algorithm - development

3. 2-D barycentre:

Input: The correlation map

Method:

- Search for the max.
- Compute barycentre within N pixels window.
- Source peak position is given by barycentre.

Status:

Not implemented inside the partition yet (implemented in prototype).

MXT Hardware:

- Qualification model was fully tested at PANTER in Feb. 2020
- ► Flight model test will be in June 2020.

MXT software:

- > Noise characterisation, clustering, X-band, VHF band algorithm are implemented inside the partition.
- > Localization algorithm implementation is ongoing.
- > The data from PANTER test will be used to test and validate the SCSW.

Backup slides

MXT software development environment

- > Hardware: virtual machine with CentOS Linux.
- **TSLEON:** a microprocessor core used to emulate the on-board MDPU.
- > **XtratuM:** a hypervisor used to manage real-time processes.
- > Sandbox partition: to write/read ports for SCSW.
- > SatAndLight: camera frames simulation tool.
- ► C : coding language.

The hypervisor implements a cyclic temporal windows in a major frame (MAF). 1 MAF last for 1 sec: the scientific tasks are distributed over 8 slots of 50 ms each, triggered every 125 ms.

SatAndLight - simulate camera frames

Simulate realistic sequences of camera frames for both camera modes:

- FULL FRAME mode: camera shutter is closed -> simulate a dark sequence (noise only). •
- **EVENT mode:** camera shutter is open -> simulate a bright sequence (with GRB source).
- > The sequence is converted to binary format and used to feed the partition:

SIC SEU	FEE Status	Nb Hit	Frame Time
2B	1B	2B	2B

	Pixel (254,0)	Pixel (126,0)	Pixel (255,0)	Pixel (127,0)	ASIC SEU	FEE Status	Nb Hit	Frame Time		
	4B	4B	4B	4B	2B	1B	2B	2B		
essage	sage size									

Functional test:

Test if the result satisfy the requirements

Onboard software test:

Performance test:

- > Test the time needed to run a specific algorithm
- ► If the algorithm does not fit in specified time slots \rightarrow optimize

Photon patterns

Swift grade system

Cosmic ray

Source localization (ra & dec)

Earth reference frame

MXT reference frame

 α, β, γ Euler angles

Source position given by : $dec = \frac{\Pi}{2} - \phi_{s}$ $ra = \theta_s$

$$\sin\left(\frac{s_{\beta}s_{\gamma}F - s_{\beta}c_{\gamma}(L_y/2 - y_P) + c_{\beta}(L_z/2 - z_P)}{\sqrt{F^2 + (y_P - L_y/2)^2 + (z_P - L_z/2)^2}}\right)$$

$$\cos\left(\frac{(c_{\alpha}c_{\gamma} - s_{\alpha}c_{\beta}s_{\gamma})F + (c_{\alpha}s_{\gamma} + s_{\alpha}c_{\beta}c_{\gamma})(L_y/2 - y_P) + s_{\alpha}s_{\beta}(L_z/2 - z_P)}{\cos(\det)\sqrt{F^2 + (y_P - L_y/2)^2 + (z_P - L_z/2)^2}}\right)$$

Ly, Lz, F : Geometry of the camera. yp, zp : source peak position in the camera.

