

DEFLECTOMETRY APPLIED TO FREEFORM AND LARGE OPTICAL SURFACE METROLOGY

ELBERETH 2020

Hugo Jonquière

Renaud MERCIER YTHIER

Laurent MUGNIER Vincent MICHAU

THE FRENCH AEROSPACE LAB

1 Safran REOSC / Confidential / Date /

Sommaire

I – OPTICAL FABRICATION

II – DEFLECTOMETRY : PRINCIPLE

III – RESEARCH AXIS & RESULTS

Safran REOSC /20/02/2019

OPTICAL FABRICATION

Optical fabrication : an iterative process

4 Safran REOSC /24/08/2018

SAFRAN

6 Safran REOSC /24/08/2018

7 Safran REOSC /24/08/2018

SAFRAN

DEFLECTOMETRY : PRINCIPLE

2

Safran REOSC /20/02/2019

Deflectometry : Principle

Extract a mirror's shape from a pattern's reflexion

11 Safran REOSC /24/08/2018

Deflectometry : Principle

Image from *Phase Measuring Deflectometry: a new approach to measure specular free-form surfaces*, Markus C. Knauer, Jurgen Kaminski and Gerd Hausler

Extract a mirror's shape from a pattern's reflexion

12 Safran REOSC /24/08/2018

Hausler

Image from *Phase Measuring Deflectometry: a new approach to measure specular free-form surfaces*, Markus C. Knauer, Jurgen Kaminski and Gerd

13 Safran REOSC /24/08/2018

How to associate source, mirror and detector ?

Phase Shift algorithm

14 Safran REOSC / Confidential / 19-12-2018 /

How to associate source, mirror and detector ?

Phase Shift algorithm

15 Safran REOSC / Confidential / 19-12-2018 /

How to associate source, mirror and detector ?

Phase Shift algorithm

 $1 pixel \Leftrightarrow 1 source pixel$

16 Safran REOSC / Confidential / 19-12-2018 /

17 Safran REOSC /24/08/2018

18 Safran REOSC /24/08/2018

19 Safran REOSC /24/08/2018

Limitations & axis of research

Frequency

20 Safran REOSC /24/08/2018

Limitations & axis of research

Geometry errors bias Print-through bias & error propagation through inversion

- Phase Shift algorithm robust against harmonic printthrough
- Regularize the ill-conditionned inversion problem
- Auto-calibrating geometric parameters

Frequency

RESEARCH AXIS & RESULTS

2

Safran REOSC /20/02/2019

25 Safran REOSC / Confidential / 19-12-2018 /

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SAFRAN

Non-linear display impact on shape reconstruction : Shape measured, Phase Shift algorithm robust against

26 Safran REOSC / Confidential / 19-12-2018 /

High frequencies performance

Ill-conditionned inversion problem

High frequencies performance

High frequency noise amplification

High frequencies performance

High frequency noise amplification

Another use of regularization : inpainting

Heure: 13:53:23 MSE L = 632,80 nm R = 71,743 mm Résol.: 765x765 Echelle Lin.: -87,101 nm à 172,767 nm 371165 points Min = -87,101 nm Max = 172,767 nm Moy = 26,875 nm P-V = 259,867 nm RMS = 44,014 nm

MERLIN : primary mirror of one lightpath

32 Safran REOSC / Confidential / 19-12-2018 /

Another use of regularization : inpainting

Data processing tool developped for REOSC : in-painting & filtering

MERLIN : primary mirror of one lightpath

SAFRAN

33 Safran REOSC / Confidential / 19-12-2018 /

Registration & substraction : 30 nm RMS

ELT M2 Matrix, $\phi = 2000mm$, Sub Zernike 36

34 Safran REOSC / Confidential / 19-12-2018 /

35 Safran REOSC / Confidential / 19-12-2018 /

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SAFRAN

- Conclusion -

36 Safran REOSC /16/11/2018

Conclusion:

<u>Today :</u>

- Phase Shift algorithm robust against harmonic print-through
- Regularize the ill-conditionned inversion problem
- In-painting algorithm

Conclusion :

<u>Today :</u>

- Phase Shift algorithm robust against harmonic print-through
- Regularize the ill-conditionned inversion problem
- In-painting algorithm

In developpement :

- Auto-calibrating geometry method

Future work :

- In situ deflectometry implementation for the fifth ELT Mirror (Plane, 2,5m diameter)
- Article to come

Conclusion:

<u>Today :</u>

- Phase Shift algorithm robust against harmonic print-through
- Regularize the ill-conditionned inversion problem
- In-painting algorithm

In developpement :

- Auto-calibrating geometry method

Future work :

- In situ deflectometry implementation for the fifth ELT Mirror (Plane, 2,5m diameter)
- Article to come

Thank you for your attention !

Bibliography :

 [1] Design of phase-detection algorithms insensitive to bias modulation, Yves Surrel, Applied Optics, Vol. 36, <u>Issue 4</u>, pp. 805-807 (1997)

 [2] Software configurable optical test system: a computerized reverse Hartmann test, Peng Su, Robert E. Parks, Lirong Wang, Roger P. Angel, and James H. Burge, Applied Optics, Vol. 49, <u>Issue 23</u>, pp. 4404-4412 (2010)

[3] Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach, Y. W. J. H. B. a. K. K. a. M. I. Peng Su, Optics express, Vol. 20, <u>Issue 111</u> (2012).

