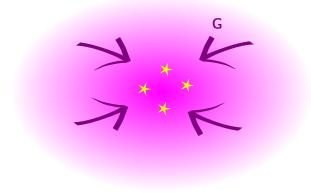
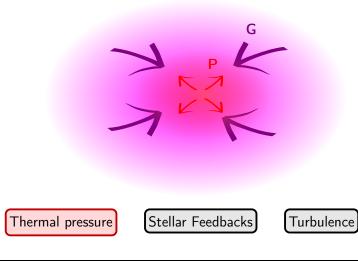
Can stars regulate star formation ?

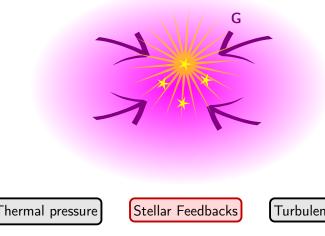
Noé Brucy Patrick Hennebelle Cédric Colling AIM - CEA Saclay


Wed 26/02, Elbereth 2020



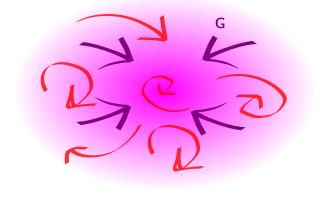
UNIVERSITE PARIS-SACLAY




$$\textit{SFR}_{
m grav} pprox rac{M_{
m cloud}}{t_{
m free-fall}} pprox 460~M_{\odot} \cdot {
m yr}^{-1}$$

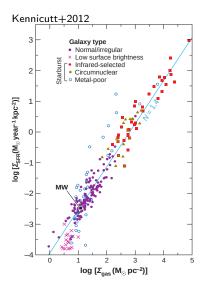
$$SFR_{
m grav} \approx \frac{M_{
m cloud}}{t_{
m free-fall}} \approx 460 \ M_{\odot} \cdot {
m yr}^{-1} \gg SFR_{
m obs} \approx 2 \ M_{\odot} \cdot {
m yr}^{-1}$$

Quenching star formation Estimating the Star Formation Rate (SFR)


Quenching star formation Estimating the Star Formation Rate (SFR)

Thermal pressure

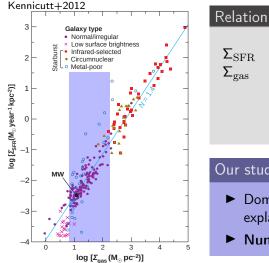
Quenching star formation Estimating the Star Formation Rate (SFR)



Thermal pressure

Stellar Feedbacks

The Schmidt-Kennicutt law



Relation between

$$\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^{1.4}$$

Σ Σ

The Schmidt-Kennicutt law


Relation between

$$\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^{1.4}$$

Our study

- Dominating quenching processes explaining this law ?
- Numerical investigation

Putting a galaxy into a (numerical) box

MHD simulations with Ramses

- ▶ 1 kpc^3 region of a galactic disk
- Physics of the interstellar medium (cooling / heating)
- ► Star formation: density threshold

Tested quenching processes

- 1. Stellar feedbacks:
 - HII Region
 - UV heating
 - Supernovae
- 2. Large scale turbulent driving

Star formation self-regulation

Description of the feedback models

HII regions

Expanding ionized bubble of hydrogen, with a shock.

Model

Expansion computed via radiative transfert.

Far Ultra Violet

Energetic UV photons can go trough the gas and heat it.

Model

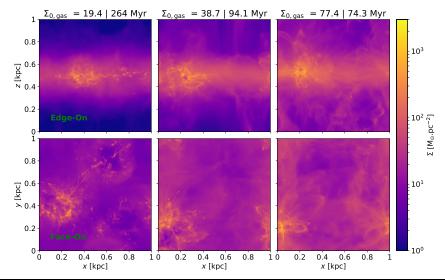
Uniform heating of the gas, proportional to the SFR.

Supernovae

End of life of massive stars, injects $10^{51} {\rm erg}$ in the ISM.

Model

Stellar object with random motion that eventually inject momentum.

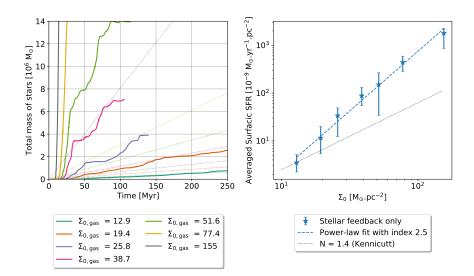

Noé Brucy

Regulation of star formation

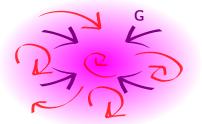
Wed 26/02, Elbereth 2020 5/11

Star formation self regulation

Column density maps



Noé Brucy


Regulation of star formation

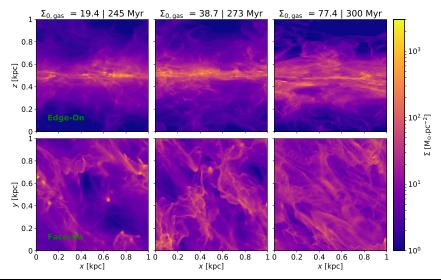
Wed 26/02, Elbereth 2020 6/11

Star formation self regulation

The influence of larger-scale dynamics: turbulent driving

Turbulence from galactic dynamics

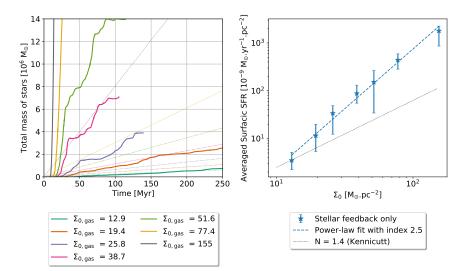
- Spirals, mass transfert \rightarrow turbulence
- Expected injected power: $P_{\rm inj} \propto \Sigma_{\rm gas}^{2.5}$


Model

An extra 2D force is added to generate random motion. Two sets of simulations:

$$P_{\rm inj} \propto \Sigma_{\rm gas}^{2.5} P_{\rm inj} \propto \Sigma_{\rm gas}^4$$

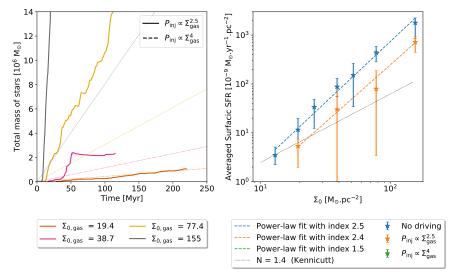
Effects of turbulence driving


Column density maps

Noé Brucy

Regulation of star formation

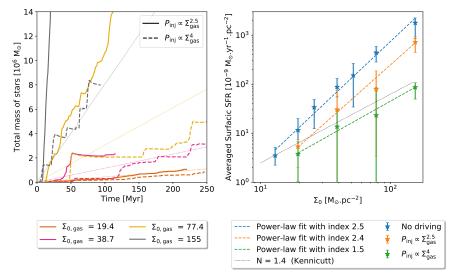
Effects of turbulence driving



Without turbulence

Noé Brucy

10/11


Effects of turbulence driving

Without turbulence , $P_{ m inj} \propto \Sigma_{ m gas}^{2.5}$

Noé Brucy

Effects of turbulence driving

Without turbulence , $P_{\rm inj} \propto \Sigma_{\rm gas}^{2.5}$, $P_{\rm inj} \propto \Sigma_{\rm gas}^4$

Noé Brucy

Regulation of star formation

Wed 26/02, Elbereth 2020 10/11

Conclusions

Stellar feedback alone cannot explain the Schimdt-Kennicutt Law.

Turbulent driving can reduce the SFR enough.

But the required energy is too high.

Future work

Test different kind of turbulence.

Galaxy-scale simulations to have better constraints on turbulence.

Noé Brucy

Regulation of star formation

Wed 26/02, Elbereth 2020

11/11