Core-Collapse Supernova O	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion 0

Multimessenger signals from core-collapse supernovae

Anne-Cécile Buellet

CEA/AIM

February 27, 2020

Anne-Cécile Buellet

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion

- 1 Core-Collapse Supernova
- 2 Multimessenger signatures of instabilities
- **3** Neutrino-driven convection
- **4** Conclusion

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
•			

than a second

• Iron core : 10^3 km $\rightarrow 10^1$ km in less

The collapse and the stalled shock

Massive stars end-of-life (8 to 40 M_{\odot}) :

Anne-Cécile Buellet

CEA/AIM

Core-Collapse Supernova o Multimessenger signatures of instabilities $\bullet \circ$

Neutrino-driven convection

Neutrino-driven convection and Standing Accretion Shock Instability (SASI)

Neutrino-driven convection

Foglizzo +2006

Anne-Cécile Buellet

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
	00		

Expected observations of SASI

ដូ

-22.5

ទ

23.5

5

SFH

300

Multimessenger signals from core-collapse supernovae

Anne-Cécile Buellet

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
		•00	

An idealised model of the gain region

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
		000	

The stability criterion and length scales

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
		000	

The stability criterion and length scales

Stability criterion :
$$\chi \sim \frac{\tau_{adv}}{\tau_{buov}}$$

- τ_{buoy} , time required for the instability to develop
- M, the Mach number

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
O		००●	0

Toward a new criterion

Several length scales :

• H_S, the size of the most buoyant region

•
$$H_{\rho} = \frac{c_s^2}{g}$$
, the density scale-height

Anne-Cécile Buellet

Core-Collapse Supernova	Multimessenger signatures of instabilities	Neutrino-driven convection	Conclusion
o	00		●

Several methods:

- Planar / Spherical case
- Incompressible / Compressible
- Numerical / Analytical
- Perturbation / Energetic considerations
- Hydrostatic / Advection
- No rotation / Rotation

NASA/CXC/RIKEN/T. Sato et al.

Anne-Cécile Buellet

CEA/AIM