Baryon decays involving $b \rightarrow c l v$ transitions @ LHCb

Abhijit Mathad b-baryon Fest workshop 6th November 2020

What have we done with $b \rightarrow q l \nu$ transitions ?

Measurements causing a stir

R(D) Vs $R(D^*)$ at 3.08 σ

Where have the b-baryon decays contributed?

First observations of suppressed $b \rightarrow u$ transitions (Observed $\Lambda_b \rightarrow p\mu\nu$)

Measurement of production fraction and production asymmetry. [Studied inclusive sample of $\Lambda_b \rightarrow \Lambda_c \mu \nu X$ (production asymmetry ongoing)]

Measurement of lifetime of the non-prompt charm hadrons and CP violation in their decay. [Inclusive samples of $\Lambda_b \to \Lambda_c \mu v X$, $\Xi_b^{0(-)} \to \Xi_c^{+(0)} \mu^- v X$ and $\Omega_b^- \to \Omega_c^0 \mu v X$ (CPV not yet)] Constrain CKM elements: $|V_{ub}|$ and $|V_{cb}|$ (Studied $\Lambda_b \rightarrow p\mu\nu$ and $\Lambda_b \rightarrow \Lambda_c\mu\nu$)

Tests of LFUV ($R(\Lambda_c)$ Ongoing)

Tests of HQEFT and Lattice QCD predictions (Shape of q^2 distribution of $\Lambda_b \rightarrow \Lambda_c \mu \nu$)

Green: b-baryon decays that have contributed towards the measurement. Yellow: Things I will touch in this talk.

Studies of $\Lambda_b \to \Lambda_c^{(*)} l \nu$ decays

- Crucial to study decays with the same underlying $b \rightarrow c$ transition but involve different hadrons.
 - Provides complimentary environments with different systematic uncertainties and varying sensitivities to different NP contributions.
- Will mainly concentrate on studies of $\Lambda_b \to \Lambda_c^{(*)} l \nu$ decays.
 - Why b-baryon decays? Compared to b-meson decays allows us to probe different spin dynamics (e.g. particularly sensitive to tensor NP currents).
 - Why Λ_b baryons? Copious production of Λ_b baryons (more than 20% of the bhadrons at LHCb are Λ_b baryons).
 - $\succ \text{ Why } \Lambda_b \to \Lambda_c^{(*)}?$
 - Large BFs compared to mesonic counterpart e.g. $BF(\Lambda_b \to \Lambda_c \mu \nu) \sim 3 \times BF(B^+ \to \overline{D}{}^0 \mu \nu)$.
 - Reduced bkg. consideration compared to mesonic counterpart due to baryon number conservation.
 - Dynamics of the $\Lambda_b \to \Lambda_c^* l \nu$ important to understand as they form irreducible background to $R(\Lambda_c)$ measurement.

Production fractions

Form factors of $\Lambda_b^0 \to \Lambda_c^+ \mu \nu$

LHCb Collaboration[Phys. Rev. D 96, 112005]

- The decays of $\Lambda_b^0 \to \Lambda_c^+ l^- \nu$ is governed by 6 scalar form factors within SM.
- Within the framework of HQET, these form factors receive non-perturbative corrections suppressed by powers of α_S or $\frac{\Lambda_{QCD}}{m_{b,c}}$.
- In the static limit of infinite quark mass, at leading order in HQE, all the form factors are proportional to Isgur-Wise (IW) function, $\xi(w)$.
- Compared to their mesonic counterpart, the $O(\frac{\Lambda_{QCD}}{m_{hc}})$ corrections are constants that can be absorbed into $\xi(w)$.
- Therefore, in the static limit, the decay density is proportional to phase space factor K(w) and IW functions:

$$\frac{d\Gamma}{dw} \propto K(w) \,\xi^2(w)$$

• Here the $\xi(w)$ can be Taylor expanded to around (w - 1) and the coefficients (ρ^2, σ^2) can be obtained from the fit to w distribution.

$$\xi_B(w) = 1 - \rho^2(w-1) + \frac{1}{2}\sigma^2(w-1)^2 + \dots$$

Let's measure the w distribution

LHCb Collaboration[Phys. Rev. D 96, 112005]

- Fit the $m(pK\pi)$ distribution in bins of reconstructed w (related to q^2) to get the yield of the inclusive $\Lambda_b \rightarrow \Lambda_c \mu v X$ decays.
- Identify the contribution from feed-down from excited $\Lambda_c^{*+} \rightarrow \Lambda_c^+ \pi^+ \pi^-$ by fitting $m(\Lambda_c \pi \pi)$.

Large signal in LHCb Run I data integrated over w!

Final state	Yield
$\Lambda_c(2595)^+\mu^-\overline{ u}_\mu$	8569 ± 144
$\Lambda_c(2625)^+\mu^-\overline{ u}_\mu$	22965 ± 266
$\Lambda_c(2765)^+\mu^-\overline{ u}_\mu$	2975 ± 225
$\Lambda_c(2880)^+\mu^-\overline{ u}_\mu$	1602 ± 95
$\Lambda_c^+ \mu^- \overline{ u}_\mu X$	$(2.74 \pm 0.02) \times 10^{6}$

Reconstruction and efficiency variation

LHCb Collaboration[Phys. Rev. D 96, 112005]

- What is the reconstructed $q^2 = (P_{\Lambda_b} P_{\Lambda_c})^2$?
- In the case of single missing particle, one can obtain the Λ_b 4-momentum with a quadratic ambiguity exploiting the separation between the secondary (Λ_cμ) and primary (Λ_b) vertex positions [Nucl.Instrum.Meth. A569 (2006) 824-828].
 For this analysis, a solution is picked at random (checking that it does not introduce huge bias).
- The true q^2 or w distribution is unfolded using SVD technique [Nucl.Instrum.Meth.A372:469-481,1996].

This spectrum is later corrected for selection efficiency variation over w distribution, before extracting IW function.

Results

LHCb Collaboration[Phys. Rev. D 96, 112005]

- Fitting for the IW shape, leads to the measurement of the coefficiencts ρ^2 (slope) and $\sigma^2/2$ (curvature).
- Both of these coefficients are highly correlated, difficult to disentangle with only the recoil information.
- Both of the coefficients agree with predictions and their bounds (Lattice: <u>Phys. Rev. D 57, 6948</u>, QCD sum rules: <u>Phys. Lett. B629 (2005) 27</u> and relativistic quark model: <u>Phys. Rev. D 73, 094002</u>).
- The lattice prediction of q² distribution was also compared and good agreement was found [<u>Phys. Rev.</u> <u>D 92,034503</u>].

Fit result

Test with Lattice QCD prediction

Consequence of the LHCb and Lattice result

F. Bernlochner, Z. Ligeti, D. Robinson and W. Sutcliffe [Phys. Rev. D 99, 055008 (2019)]

- The LHCb result shows that the higher order $O(\Lambda_{QCD}^2/m_c^2)$ corrections do not have large effect.
- Using both the LHCb measurement and the Lattice QCD predictions [Phys. Rev. D 92, 034503], the correction terms are quantifiable in $\Lambda_b \rightarrow \Lambda_c l \nu$ decays.
- Parameter-free predictions of tensor form factors possible at $O(\Lambda_{QCD}^2/m_c^2)$ in HQET framework.
- Leading to precise predictions of $R(\Lambda_c) = 0.3237 \pm 0.0036$ within SM and also arbitrary NP scenario.

Moving forward, what to explore in $\Lambda_b \rightarrow \Lambda_c \mu \nu$ decays?

- Additional sensitivity to form factors can be gained by measuring the shape of both the q^2 and $\cos(\theta_{\mu})$.
 - > With a suitable normalisation channel extract $|V_{cb}|$ with good precision.
- Add more data by including also Run II sample.
- Improve the resolution of the 2D distributions to reduce bin migration.
 - Instead of picking one of the quadratic solutions randomly, train a linear regression model using flight information to pick a solution that is closer to the prediction [J. High Energ. Phys. (2017) 2017]. This can be further improved.
- New observables to explore e.g. short distance effects from different currents:
 - What is the sensitivity is achievable on these with LHCb data?
 - Exploring the phase space of different Λ_c decays $\Lambda_c \rightarrow \Lambda \pi, K_S p, pK \pi, ...?$

Shape measurement and $|V_{cb}|$

Ongoing LHCb analysis

- Possibility to measure the shape of the q^2 and $cos\theta_{\mu}$ and $|V_{cb}|$ in the same analysis.
- Idea to use the inclusive $\Lambda_b \to X_c \mu \nu$ sample as the normalisation channel and measure :

$$\frac{d\Gamma_{\Lambda_b \to \Lambda_c \mu \nu}}{dq^2 d \cos \theta_{\mu}} = \frac{N_{\Lambda_b \to \Lambda_c \mu \nu}(q^2, \cos \theta_{\mu})}{N_{\Lambda_b \to X_c \mu \nu}} \times \Gamma_{\Lambda_b \to X_c \mu \nu}$$

Where $\Gamma_{\Lambda_b \to X_c \mu \nu}$ estimated in the similar way to our Λ_b production measurement [<u>PhysRevD.100.031102</u>].

• Combine with the theory prediction [<u>Phys. Rev. D 99, 055008 (2019)</u>] and estimate $|V_{cb}|$.

$$\frac{d\Gamma_{\Lambda_b\to\Lambda_c\mu\nu}}{dq^2d\cos\theta_{\mu}} = |V_{cb}|^2 f(q^2,\cos(\theta_{\mu}))$$

• Analysis currently underway with full LHCb data.

New Physics sensitivity in $\Lambda_b \rightarrow \Lambda_c \mu \nu$ decays

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

- Numerous studies have shown effects of NP contributions on angular observables of $B \rightarrow D^{(*)}\tau\nu$ and global fits to $b \rightarrow c\tau\nu$ have been conducted to determine the Wilson coefficients [JHEP09(2019)103].
- A recent global fits to $b \rightarrow c\mu\nu$, *cev* transitions has proven that good sensitivity can be obtained on the various Wilson coefficients through studies of *b*-meson [JHEP01(2019)009].
- The $\Lambda_b \to \Lambda_c l\nu$ is a good candidate to complement the NP sensitivity, due to the large production cross section of Λ_b^0 baryons and the well measured form factors.
- (Topic of next presentation) Very recently angular description of unpolarised Λ_b → Λ_c(→ Λπ)lν semileptonic decays in the presence of NP operators had also been put forward [arXiv:1907.12554].

Decay channel choices

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

- To study the new physics effects, we made the following choices for the decay channels.
- Considered muonic Λ_b decay i.e. $\Lambda_b \rightarrow \Lambda_c \mu \nu$:
 - Tauonic mode is more sensitive to NP, but challenging! (irreducible bkgs and dilution of the resolution on fit variables).
- Comments on Λ_c decay considered:
 - No model available for $\Lambda_c \rightarrow pK\pi$ (Do not have to wait too long for this). Experimentally attractive higher BF and better reconstruction.
 - The next in line were $\Lambda_c \to pK_s$ and $\Lambda_c \to \Lambda \pi^+$: The uncertainty on weak decay parameter (α_{Λ_c}) for the latter is a factor ¹/₄ compared to the former from BESIII [Phys. Rev. D 100, 072004 (2019)]. However, given our large signal yield we could investigate its sensitivity from our fit.
 - The decay of $\Lambda_c \rightarrow pK_S$ is experimentally attractive (slightly higher BF and better reconstruction efficiency of K_S at LHCb due to its smaller lifetime.
- Comment on Λ_b^0 transverse polarization:
 - \blacktriangleright Until now the Λ_b polarisations at LHC have been measured using the angular analysis of $\Lambda_b \rightarrow J/\psi \Lambda$.
 - > Semileptonic decays could provide a complimentary measurement. Sensitivity needed to be investigated.

Effective Hamiltonian

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

• Considered most generic effective Lagrangian of the four-fermion interaction

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1+C_{V_L}) \mathcal{O}_{C_{V_L}} + C_{V_R} \mathcal{O}_{C_{V_R}} + C_{S_L} \mathcal{O}_{C_{S_L}} + C_{S_R} \mathcal{O}_{C_{S_R}} + C_{T_L} \mathcal{O}_{C_{T_L}} \right] + h.c. \\ & \mathcal{O}_{C_{V_L}} &= \bar{c}_L \gamma^{\mu} b_L \bar{\ell}_L \gamma_{\mu} \nu_L , \\ & \mathcal{O}_{C_{V_R}} &= \bar{c}_R \gamma^{\mu} b_R \bar{\ell}_L \gamma_{\mu} \nu_L , \\ & \mathcal{O}_{C_{S_L}} &= \bar{c}_R b_L \bar{\ell}_R \nu_L , \\ & \mathcal{O}_{C_{S_R}} &= \bar{c}_L b_R \bar{\ell}_R \nu_L , \\ & \mathcal{O}_{C_{T_L}} &= \bar{c}_R \sigma^{\mu\nu} b_L \bar{\ell}_R \sigma_{\mu\nu} \nu_L \end{aligned}$$

• Assume the absence of (left) right-handed $v_l(\bar{v}_l)$ and note that the right-handed tensor operator O_{CT_R} vanishes.

Six-fold differential decay density with NP

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

• In the paper, for the first time, we present the full six-fold differential decay density for the polarised $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK_S) l\nu$ decays in the presence of NP.

$$d^{6}\Gamma = \frac{N}{\Gamma} |T|^{2} d\Omega'$$

$$d\Omega' = dq^{2}d\cos\theta_{\Lambda_{c}}d\cos\theta_{p}d\phi_{p}d\cos\theta_{l}d\phi_{l}$$

$$d\Omega' = dq^{2}d\cos\theta_{\Lambda_{c}}d\cos\theta_{p}d\phi_{p}d\cos\theta_{l}d\phi_{l}$$

$$= K_{1}(1 - P_{\Lambda_{b}}\cos\theta_{\Lambda_{c}}) + K_{2}(1 + P_{\Lambda_{b}}\cos\theta_{\Lambda_{c}}) + K_{3}P_{\Lambda_{b}}\sin\theta_{\Lambda_{c}}$$

$$K_{i} \text{ depend on all phase space observables except } \theta_{\Lambda_{c}}$$

λT

6/11/2020

Two scenarios and two channels

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

 $d\Omega' = dq^2 d\cos\theta_{\Lambda_c} d\cos\theta_p d\phi_p d\cos\theta_l d\phi_l$

Fit scenario 1 (labelled *pKpi*)

Integrate all the observables except two: q^2 and $\cos(\theta_{\mu})$

- Removes inherently dependence on the Λ_c weak decay parameter (α_{Λ_c}) and Λ_b polarization (P_{Λ_b}) .
- To conduct the sensitivity study pseudoexperiments are generated with a projected yield of 7.5M events that LHCb has accumulated for $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK\pi)\mu\nu$ in Run1&2.

Observables affected by missing neutrino and resolution effects need to be included.

Fit scenario 2 (labelled *pK_S*)

Integrate out all the observables except four: q^2 , $\cos(\theta_{\mu}), \cos(\theta_{p})$ and ϕ_{p}

- Retained dependence α_{Λ_c} and P_{Λ_b} . However, can expect that this process reduces sensitivity to P_{Λ_b} greatly.
- Pseudo-experiments are generated with a projected yield that is a factor 1/20 compared to the $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK\pi)\mu\nu$ decay (hit from Λ_c BF and K_s reco. Eff).
- Compared to scenario 1, loss in statistics, but hoping to gain information from addition of 2 extra fit variables.

Results I: Sensitivity with no NP

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

- The resolution of q^2 and $\cos(\theta_{\mu})$ folded into model and variation of efficiency neglected (efficient muon trigger!).
- A binned maximum likelihood fit performed (20 bins/dim.).
- The $\Lambda_b \rightarrow \Lambda_c$ form factors (6 SM and 4 NP)) are constrained using Lattice results [JHEP 1708 (2017) 131].
- Fit only the shape (large 7% uncertainty on Λ_b prod.), implying no sensitivity to $V_{cb}(1 + C_{V_L})$.
- In the absence of NP, compare our sensitivities to the constraints from global fits to b → cµν, cev transitions (from B meson decays)
 [JHEP01(2019)009].
- Most sensitive to C_{V_R} and then C_{T_L} .
- More data wins! Gain in statistics through $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK\pi)\mu\nu$ decays better than gain in sensitivity through addition of the $\cos(\theta_p)$ and ϕ_p corresponding to $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK_S)\mu\nu$ decays.

Results II: Sensitivity with no NP

M. Ferrillo, A. Mathad, P. Owen, N. Serra [JHEP 12 (2019) 148]

- Interplay between different Wilson coefficients explored in presence of no NP.
- Large non-Gaussian correlations are observed.
- When all the Wilson coefficients are floated, large correlations and contributions from tensor and scalar currents difficult to disentangle.
- With the clever treatment of resolution and with full six-dimensional angular analysis, the sensitivity on Λ_b polarisation could be improved.
- Sensitivity on the weak decay asymmetry parameter of Λ_c is two orders of magnitude better than the BESIII estimate [Phys. Rev. D 100, 072004 (2019)].

Form factor of $\Lambda_b \rightarrow \Lambda_c^* \mu \nu$

P. Boer, M. Bordone, E. Graverini, P. Owen, M. Rotondo, D. van Dyk [JHEP 1806 (2018) 155]

- Observed large irreducible feed-down from $\Lambda_b \to \Lambda_c^* (2595)^{[1/2^-]} \mu \nu$ and $\Lambda_b \to \Lambda_c^* (2625)^{[3/2^-]} \mu \nu$ into $\Lambda_c \mu \nu X$.
- These decays are expressed in terms of 6 (for spin 1/2) and 8 form factors (for spin 3/2).
- Provide new definitions of the form factors, extending Ref [Phys. Rev. D 57, 5620 (1998)] at $O(\frac{\Lambda_{QCD}}{m_{b,c}})$, to include $O(\alpha_s)$ corrections.
- For both states, propose an exponential parametrisation of the leading and sub-leading IW functions (inspired by ground state $\Lambda_b \rightarrow \Lambda_c ev$ [Nucl.Phys.B396:38-52,1993].

Leading term
$$\zeta(q^2)\Big|_{\text{lin}} \equiv \zeta(q^2_{\text{max}})\left[1 + \rho\left(\frac{q^2}{q^2_{\text{max}}} - 1\right)\right],$$

Sub-leading (SL) term $\zeta_{\text{SL}}(q^2)\Big|_{\text{lin}} \equiv \zeta(q^2_{\text{max}})\left[\delta_{\text{SL}} + \rho_{\text{SL}}\left(\frac{q^2}{q^2_{\text{max}}} - 1\right)\right]$

Obtain the parameters ρ, ρ_{SL} and δ_{SL} from fits to the shapes of q² and cos(θ_μ), as result no sensitivity to normalisation ζ(q²_{max}) so no sentivity to

Form factor of $\Lambda_b \rightarrow \Lambda_c^* \mu \nu$

P. Boer, M. Bordone, E. Graverini, P. Owen, M. Rotondo, D. van Dyk [JHEP 1806 (2018) 155]

- To conduct sensitivity studies, benchmark points obtained from Zero Recoil Sum Rules.
- Pseudo experiments generated with projected yields for Run II i.e. 50k (spin ½) and 20k (spin 3/2) events.
- Large irreducible systematic due to no knowledge of O(^{A²_{QCD}}/_{m²_c}) corrections. Lattice QCD predictions would be helpful. (Paper in prep, see yesterday's <u>talk</u> by Stefan).
- Can both Lattice and LHCb data can comment the $O\left(\frac{\Lambda_{QCD}^2}{m_c^2}\right)$ corr.?

0.06

0.2

Simultaneous study of both Λ^* states breaks the degeneracy b/w ρ and ρ_{SL} .

6/11/2020

Immediate future of baryonic $b \rightarrow c$ transitions

- (Not b-baryon) $R(D) R(D^*)$ with $\tau \to \mu 2\nu$ in review (Could be early next year!)
- Analysis of $R(\Lambda_c)$ both with $\tau \to \mu 2\nu$ and $\tau \to 3\pi\nu$ ongoing (Could be next year!)
- Phase space of $\Lambda_c \rightarrow pK\pi$ decays tagged by inclusive $\Lambda_c \mu \nu X$ (Could be next year!).
- Phase space shapes, $|V_{cb}|$ and NP (for ground-state) in $\Lambda_b \to \Lambda_c^{(*)} \mu \nu$ (Could be next year!).
- Analysis of $R(\Lambda_c^*)$ (May or may not be next year!).

Dataset up to year

LFUV projections from talk by Manuel Franco Sevilla

Near future of baryonic $b \rightarrow c$ transitions

← 9 fb ⁻¹						Tim	Goal: 50 fb ⁻¹ Goal: 250 ff												0-1 →					
		ograd					<u></u>																	
Run 1	LS1	Run 2			LS2			Run 3			LS3			Run 4			LS4	Run 5			LS5	S5 Run 6		
2011 2012	2013 2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037

- Explore $\Lambda_b \to \Lambda_c (\to pK_S, \Lambda \pi) \mu \nu$ decays (Hadronic A_{FB}).
- Angular analysis of $\Lambda_b \to \Lambda_c^{(*)} \tau \nu$, with $\tau \to \mu 2\nu$ (large statistics) & $\tau \to 3\pi\nu$ (better resolution).
- Explore heavier b-baryon SL decays of Ξ_b^- and Ω_b^- (no lattice predictions).
- Electron modes (challenging in upgrade scenarios).
- Semileptonic decays tagged by excited b-baryon states [arXiv:1402.4205].

- What are the interesting observables?
 - ➤ Triple product asymmetries (TPA) in Λ_b → Λ^(*)_c lν decays? [For B → D^{*+}l⁻ν: arXiv:1906.07752].
 - Exploring the decays of $\Lambda_c \rightarrow pK\pi$ tagged by inclusive or exclusive SL Λ_b decays? (CPV could constrain relative phases of the Wilson coefficients of Λ_b decays).
 - Where does R(Λ^{*}_c) fit into this model independent expression? [Phys. Rev. D 99, 075006]

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \simeq 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)}$$

Conclusions

I have presented a summary of what the next measurements at LHCb will be for baryonic $b \rightarrow c$ transitions and their motivations.

- Current priorities with LHCb lie in publishing the LFUV tests.
- We have started to explore different kinematic distributions of both b-baryon and associated c-baryon decays. Different ways to distinguish and constrain new physics here are very welcome!
- There are places where lattice QCD inputs are essential (SL decays Ξ_b^- and Ω_b^-).
- There are also exciting prospects with baryonic $b \rightarrow u$ transitions, which are not covered here.
- I am very much looking forward to the exciting road ahead!