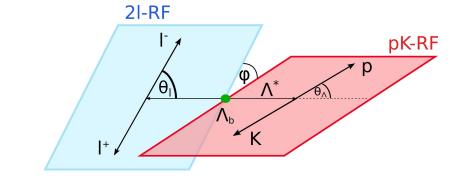


Sensitivity study of $\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$

Anja Beck, Martín Novoa-Brunet, Felicia Volle

SIS N JRE

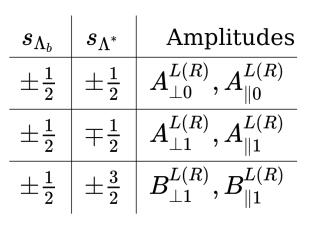

Angular Analysis of $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow Kp)$ ll [1903.00448]

L(

We focus on **A(1520)**, a **spin 3/2** which decays mainly through **strong** interaction.

$$rac{d^4\Gamma(\Lambda_b o \Lambda^*(o Kp)\ell^+\ell^-)}{dq^2d\cos heta_\ell d\cos heta_\Lambda d\phi}=rac{3}{8\pi}L(q^2, heta_\ell, heta_\Lambda,\phi)$$

$$egin{aligned} q^2, heta_\ell, heta_\Lambda, \phi) &= \cos^2 heta_\Lambda \left(L_{1c} \cos heta_\ell + L_{1cc} \cos^2 heta_\ell + L_{1ss} \sin^2 heta_\ell
ight) \ &+ \sin^2 heta_\Lambda \left(L_{2c} \cos heta_\ell + L_{2cc} \cos^2 heta_\ell + L_{2ss} \sin^2 heta_\ell
ight) \ &+ \sin^2 heta_\Lambda \left(L_{3ss} \sin^2 heta_\ell \cos^2 \phi + L_{4ss} \sin^2 heta_\ell \sin \phi \cos \phi
ight) \ &+ \sin heta_\Lambda \cos heta_\Lambda \cos \phi (L_{5s} \sin heta_\ell + L_{5sc} \sin heta_\ell \cos heta_\ell) \ &+ \sin heta_\Lambda \cos heta_\Lambda \sin \phi (L_{6s} \sin heta_\ell + L_{6sc} \sin heta_\ell \cos heta_\ell) \ &L_{1c} \propto \left(\operatorname{Re}(A_{\perp 1}^L A_{\parallel 1}^{L*}) - (L \leftrightarrow R)
ight) \ &L_{3ss} \propto \left(\operatorname{Re}(B_{\parallel 1}^L A_{\parallel 1}^{L*}) - \operatorname{Re}(B_{\perp 1}^L A_{\perp 1}^{L*}) + (L \leftrightarrow R)
ight) \ &\cdot \end{aligned}$$

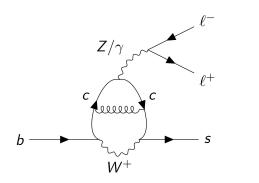


- Angular structure is dictated by the spin of the particles and the nature of the decays (P-conserving).
- L_i are interferences of the transversity amplitudes

Transversity Amplitudes

The $\Lambda_{\rm b} \rightarrow \Lambda^*$ ll decay is described by 12 transversity amplitudes. $TA = \left\{ B^{L(R)}_{\perp 1}, B^{L(R)}_{\parallel 1}, A^{L(R)}_{\perp 1}, A^{L(R)}_{\parallel 1}, A^{L(R)}_{\perp 0}, A^{L(R)}_{\parallel 0}
ight\}$ $B^{L(R)}_{\perp 1} \propto \left(rac{\mathcal{C}^{L(R)}_{9,10,+}}{H^V_+(-1/2,-3/2)} - rac{2m_b(\mathcal{C}_7+\mathcal{C}_{7'})}{a^2} H^T_+(-1/2,-3/2)
ight)$ $A^{L(R)}_{\parallel 0} \propto \left({\cal C}^{L(R)}_{9,10,-} H^A_0(+1/2,+1/2) + {2m_b ({\cal C}_7 - {\cal C}_{7'})\over a^2} H^{T5}_0(+1/2,+1/2)
ight)$ $\Lambda_{\rm b} \rightarrow \Lambda^*$ form factors Wilson Coefficients (short distance) 14 form factors in total New lattice results at high q² [2009.09313] Quark model from [1108.6129] used for numerical illustration on Form factors (long distance) the full q² range

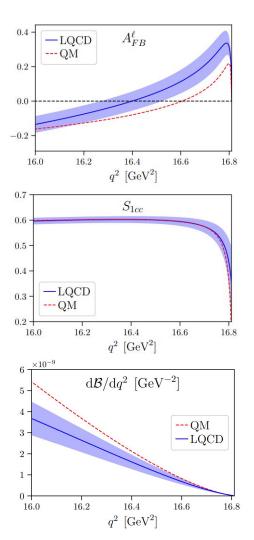
 $\mathcal{C}_{9.10,-}^{L(R)}=(\mathcal{C}_9\mp\mathcal{C}_{10})-(\mathcal{C}_{9'}\mp\mathcal{C}_{10'})$ $\mathcal{C}_{9\ 10\ +}^{L(R)} = (\mathcal{C}_9 \mp \mathcal{C}_{10}) + (\mathcal{C}_{9'} \mp \mathcal{C}_{10'})$



3

Two sources of hadronic uncertainties

Form factors (local)


We assume an uncorrelated uncertainty of 10% (5%) for each form factor (educated guess).

cc contributions (non-local)

- These contributions appear as a correction to C9, they are q² dependent, helicity dependent, and depend on external states.
- For now we consider contributions (as an error) of the order to the estimations for $B \rightarrow K^{(*)}II$ (i.e. $C_{q_{cc}} \approx 10\% C_{q}$)
- LCSR near the $q^2 = 0$ region? Extract information from experiment at J/ Ψ and $\Psi(2S)$ poles?

See Dany's Talk!

New Lattice Results! [2009.09313] (Talk by Stefan Meinel)

- Form factors coming from the lattice are recently available
- Lattice calculation done in the $\Lambda(1520)$ RF which restricts the results to high q² region
- Lower values of q² could be reached in the future using moving-NRQCD

Lattice vs quark model

- Good agreement with the results from the quark model [1108.6129]
- Similar uncertainties (only at high q²) for branching but reduced uncertainties for angular observables thanks to correlations

Low- and large-recoil limits (HQET and SCET)

HQET and SCET limits simplify the form factors. Both limits correspond to $m_h \rightarrow \infty$ in different kinematical domains.

Low Recoil (HQET)

- Two independent form factors Large recoil (SCET)
 - One independent form factor

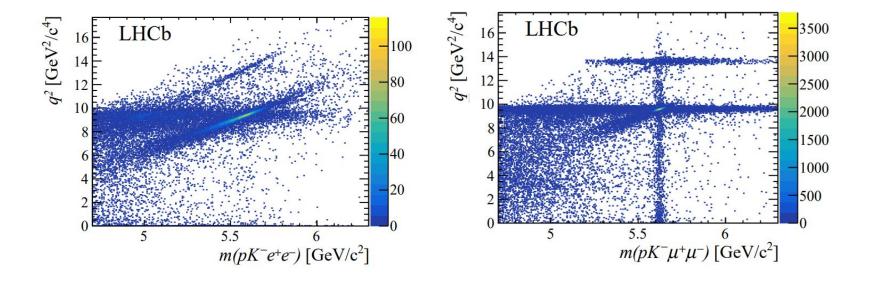
Helicity 3/2 amplitudes vanish

Only 3 independent observables

In simple words

In the HQ limit the angular momentum of the heavy-quark and the light quarks are good quantum numbers to describe the $\Lambda_{\rm b}$.

Since the light quarks are in a spin-0 diquark state and the heavy quark carries a spin 1/2, the b \rightarrow sll transition cannot yield a helicity 3/2 Λ^* in this limit.

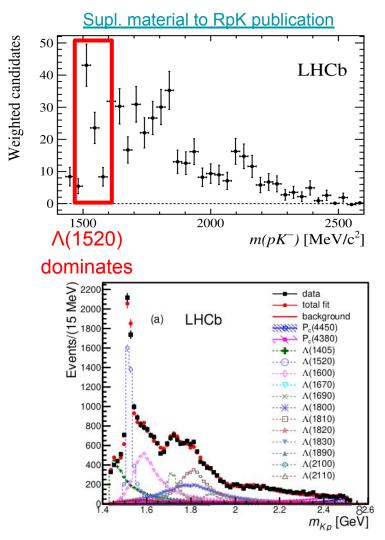

Only a trivial dependence on the angle describing the hadronic final state is left!

$$L(q^2, heta_\ell, heta_\Lambda,\phi)\simeq rac{1}{4}(1+3\cos^2 heta_\Lambda)\left(L_{1c}\cos heta_\ell+L_{1cc}\cos^2 heta_\ell+L_{1ss}\sin^2 heta_\ell
ight)$$

$$A^\ell_{
m FB}\simeq rac{3L_{1c}}{2(L_{1cc}+2L_{1ss})}$$

Experimental status of $\Lambda_b \rightarrow pK^{-}I^{+}I^{-}$

- Observation, CPV measurement in $\Lambda_b \rightarrow pK^-\mu^+\mu^-$ by LHCb <u>JHEP 06 2017 (108)</u>
- Electron mode observed but experimentally difficult <u>JHEP 05 2020 (040)</u>
- LU test R_{pK} by LHCb <u>JHEP 05 2020 (040)</u>



Disentangling the components

Rich Λ^* spectrum

Amplitude analysis at J/ψ -pole <u>Phys. Rev. Lett. 115, 072001 (2015)</u> γ -pole analysis ongoing

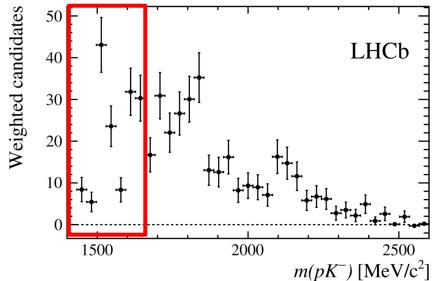
Problems of amplitude analysesmany fit parameters (fit stability)assumptions and mismodelling

Analysis of the angular moments

Angular structure in terms of an angular basis $f_i(\Omega)$: $rac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} = \sum_i K_i f_i(\Omega)$

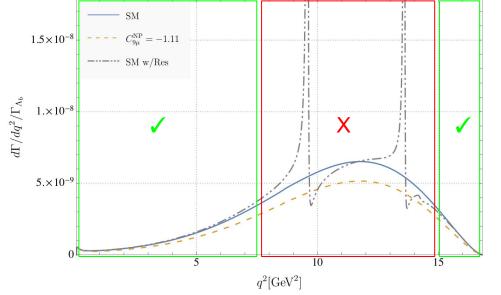
Idea: find weighting functions $w_i(\Omega)$ to extract the coefficients K_i :

 $\int w_i(\Omega) f_j(\Omega) \mathrm{d}\Omega = \delta_{ij}$


Advantages:

- No fit (no convergence problems, no instabilities, big advantage for small number of events)
- No mismodelling (resonance peaks, cut-offs, ...)
- Independent extraction of any observable + well-defined statistical properties

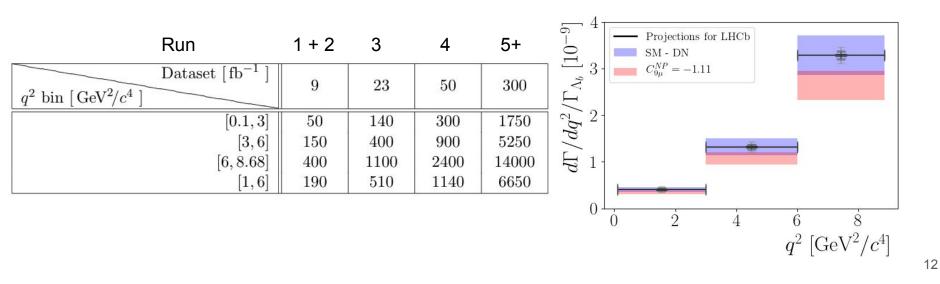
But 10-30% larger uncertainties compared to a fit.


Strategy: combine moment and angular analysis

- 1) Understand the present spin-parity states using the method of moments. \Box Hope that the $\Lambda(1520)$ is in fact dominating
- 2) Angular analysis in a window around $\Lambda(1520)$

Strategy of angular analysis in $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow pK)\mu^{+}\mu^{-}$

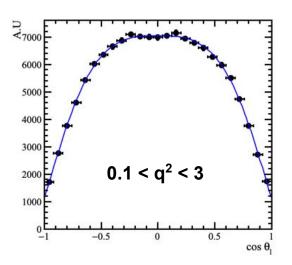
- Focus on **muon mode** but extrapolable to electron case
- Simplified (SCET/HQET) angular distribution used


4 different q² bins are considered without any high q² bin because of the reduced phase space

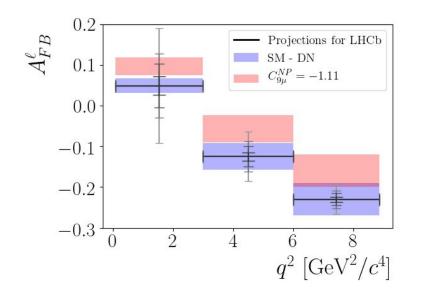
$$S_i = rac{L_i + L_i}{d(\Gamma + ar{\Gamma})/dq^2}
onumber \ \langle S_i
angle_{bin} = rac{\int_{bin} dq^2 (L_i + ar{L}_i)}{\int_{bin} dq^2 d(\Gamma + ar{\Gamma})/dq^2}$$

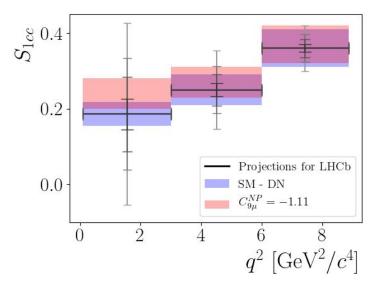
bins = {[0.1, 3], [3, 6] [6, 8.68], [1, 6]}

New Physics sensitivity to $d\Gamma/dq^2$


 Extrapolated yields from m(pK) spectrum of LU analysis and theoretical q² dependance 2) Assuming poissonianuncertainties and neglectingbackground (observed small)

Sensitivity studies for angular observables


Studies with pseudo-experiments:


- Generate pdf = theory x acceptance
 - Theory: SM and NP with $C_9^{NP} = -1.11$
 - \circ ~ acceptance from RapidSim, including acceptance and \textbf{p}_{T} cuts, modelled with Legendre polynomials
- Fit same pdf with free A_{FB}^{ℓ} and S_{1cc}
- Repeat 10 000 times per q² bin and run period

NP sensitivity to A^{ℓ}_{FB} and S^{\dagger}_{1cc}

Sensitivity of A_{FB}^{ℓ} after Upgrade 2

Poor sensitivity.

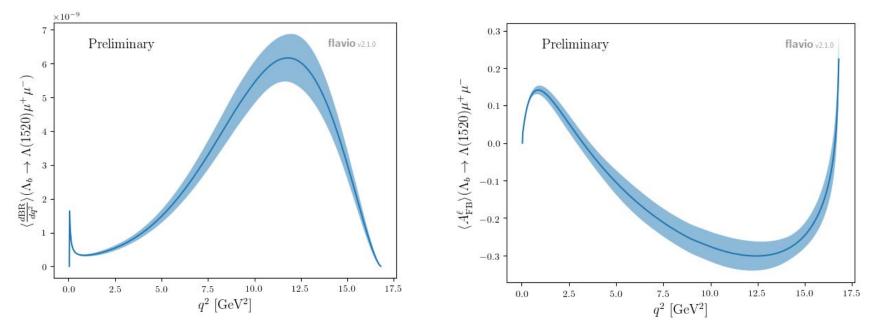
New physics sensitivity could be reached earlier with reduced theory uncertainties

Implementation of angular observables in flavio

Implemented angular observables in flavio :

- dΓ/dq2
- A_{FB}, F_L
- CP averaged angular observables and CP-asymmetries

Form factors from the full quark model wave function from <u>arXiv:1108.6129</u>


Using 10% uncertainty on $f_{0,\perp,t}$ form factors and 30% on f_{g}

→ Allows evaluation of the impact on C_9 and C_{10}

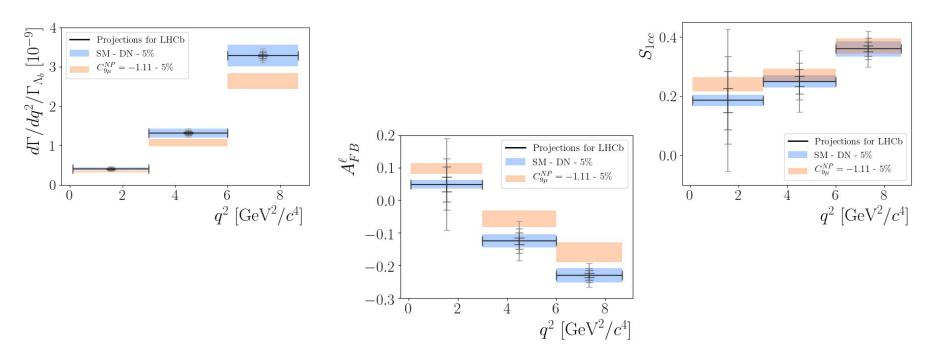
Merge request

Predictions implemented in Flavio now

Thanks to Peter Stangl

Similar to results achieved by Martín and Sébastien

Summary & conclusions


Test b \rightarrow sµµ and LFU anomalies in other modes: $\Lambda_{\rm b} \rightarrow \Lambda(1520)$ II

- theoretical framework: complicated decay rate with 12 angular observables + 14 form factors
- heavy quark limit provides large simplification: 3 observables with sensitivity to NP effects
- Measurement only possible in the muon mode at the moment
- Difficult extraction of individual Λ^*
- Experimentally A_{FR}^{ℓ} and $d\Gamma/dq^2$ provide sensitivity to New Physics
- Implementation of angular observables in Flavio \rightarrow impact on C₉ and C₁₀ can be visualized in the future
- Next step: angular analysis with LHCb data

Thank you for your attention !

Back-up: reduced theory uncertainties

