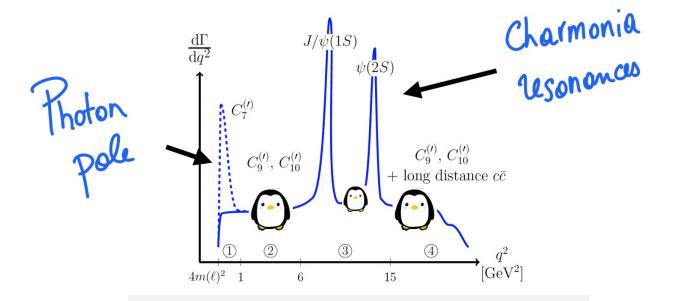


Lepton universality tests with b-baryons

Mick Mulder & Yasmine Amhis

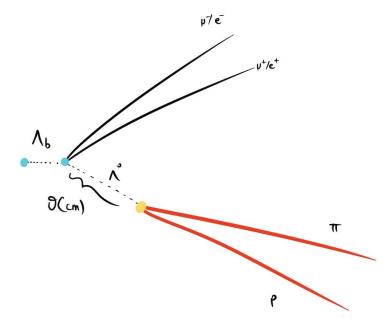


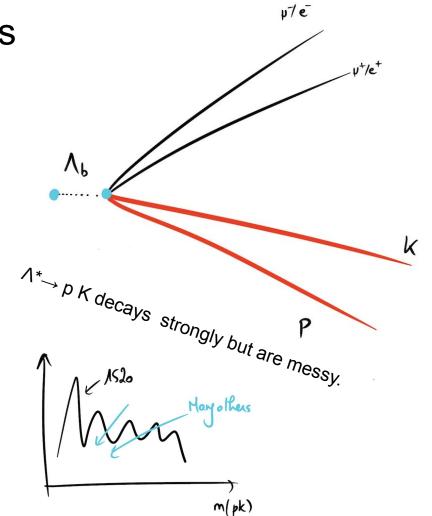
Lepton Universality tests

$$R_{\phi}(B_s) \approx R_{\pi K}(B) \approx R(\Lambda_b)_{\Lambda} \approx R(\Lambda_b)_{pK} \approx \ldots \approx R_K$$
.

$$R_H \equiv \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

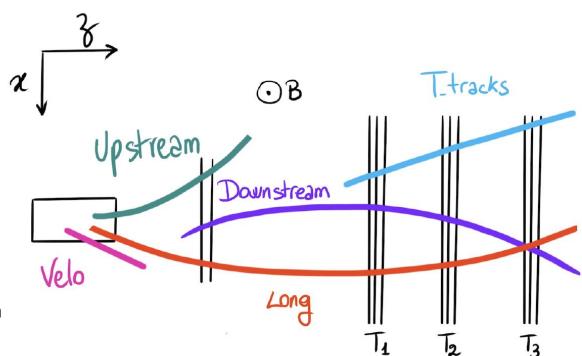
$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \lambda^{\text{CKM}} \sum_i C_i \mathcal{O}_i + h.c,$$


 R_{pK} is measured between [0.1, 6] GeV²


 R_{Λ} will be measured between [0.1, 6] and [15, 20] GeV²

Topologies of the two decays

 $\Lambda \rightarrow p\pi$ is well defined and long lived.



Reconstructing \Box^0 's

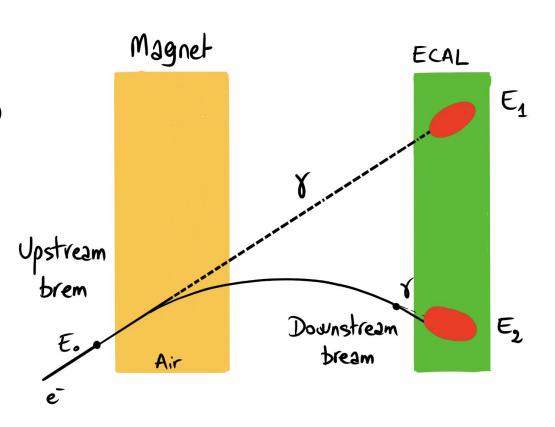
At LHCb, \Box^0 decay to $p\pi$ after few ns, few m

Reconstruct p and π as pairs of Long tracks (including VELO) or Downstream tracks (only TT and T stations)

Reconstructed \Box^0 are $\sim \frac{1}{3}$ LL, $\sim \frac{2}{3}$ DD; however, LL \Box^0 candidates have less background, better resolution

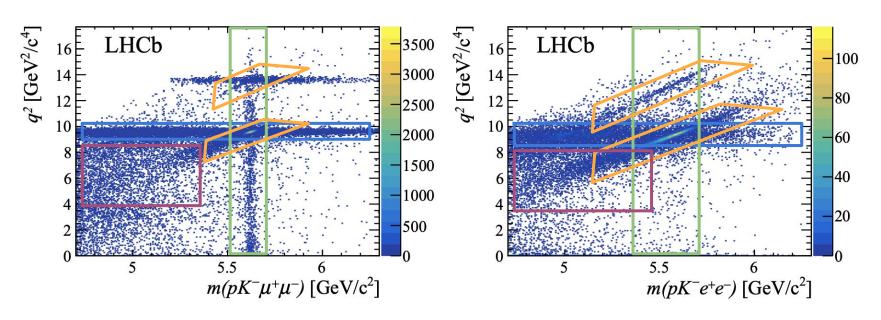
Electrons

Electrons differ from muons due to material interactions (bremsstrahlung)


Energy loss of electron of ~ 30%:

- Track momentum != electron momentum
- Lower reconstruction efficiency

Reconstruct upstream brem cluster to recover lost energy:


Not easy in busy pp events!

Still, ½ of electrons have brem recovered! (but worse resolution than regular tracks, ie muons)

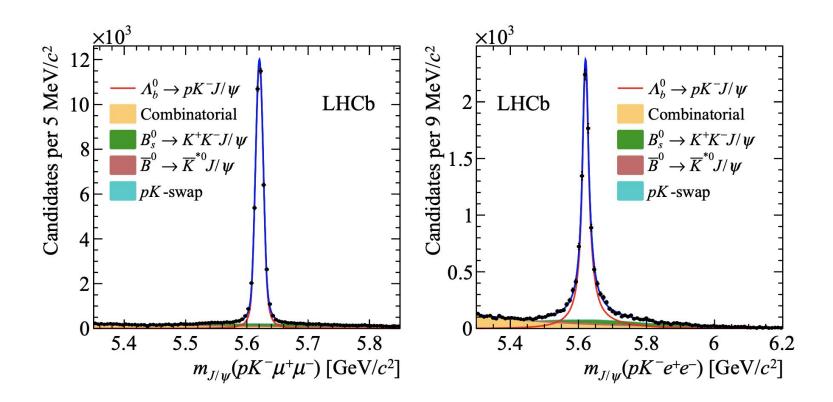
Mass versus q²

Identify \Box_b^0 contributions from charmonium modes and rare mode; backgrounds exist from partially reconstructed and charmonium + hadron combinations

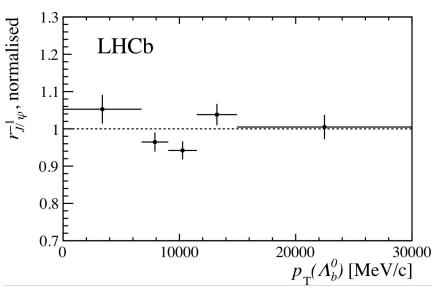
Analysis strategy

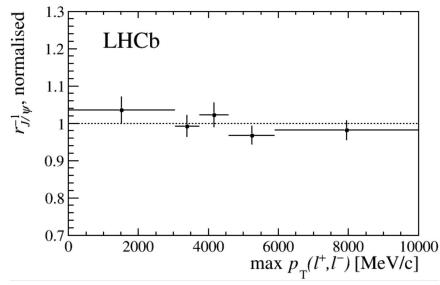
$$R_H \propto \left| rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H e^+ e^-)}
ight| imes rac{\epsilon(B
ightarrow H e^+ e^-)}{\epsilon(B
ightarrow H \mu^+ \mu^-)}$$

Counting from mass fits


From simulation

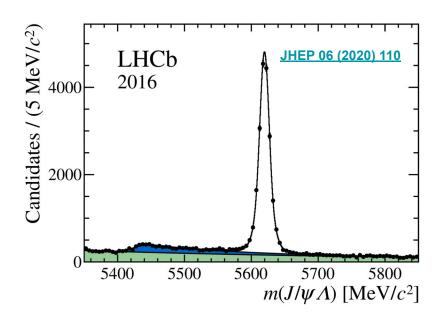
$$r_{J/\psi}=rac{BR(B
ightarrow HJ/\psi(\mu^+\mu^-))}{BR(B
ightarrow HJ/\psi(e^+e^-))}=1$$

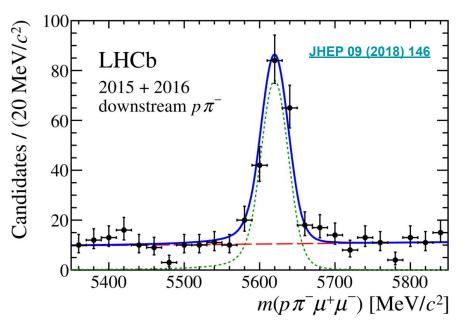



$$R_H = rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H J / \psi(\mu^+ \mu^-))} imes rac{\epsilon(B
ightarrow H e^+ e^-)}{\epsilon(B
ightarrow H J / \psi(e^+ e^-))}}{N(B
ightarrow H J / \psi(e^+ e^-))} imes rac{\epsilon(B
ightarrow H e^+ e^-)}{\epsilon(B
ightarrow H J / \psi(\mu^+ \mu^-))}}{\epsilon(B
ightarrow H J / \psi(\mu^+ \mu^-))}$$

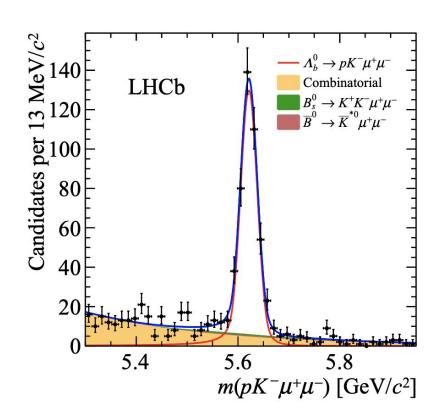
Calibration

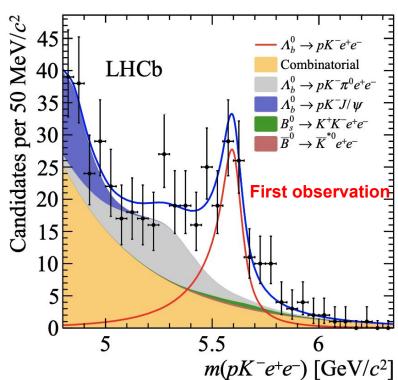
Move across the phase space

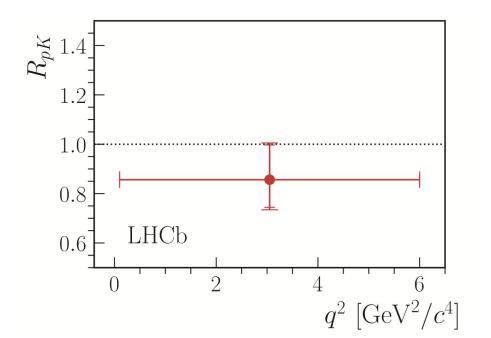




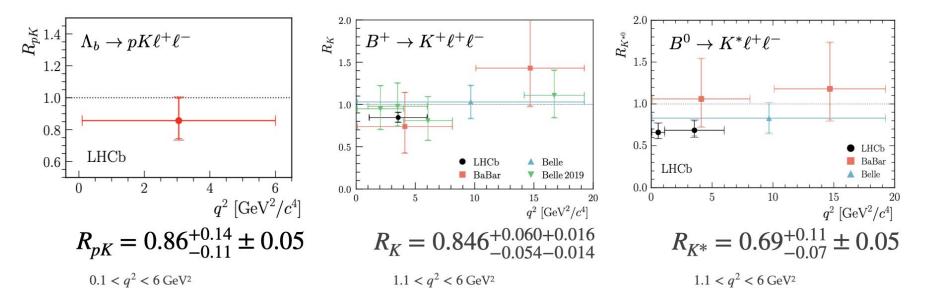
$$r_{J/\psi}^{-1} = 0.96 \pm 0.05$$


$\Box_b^{\ 0} \rightarrow J/\psi\Box^0 + rare mode$


Fits from angular analyses to both modes



Rare modes


The result

$$R_{pK}^{-1}|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 1.17_{-0.16}^{+0.18} \pm 0.07,$$

 $R(\Lambda_b)_{\Lambda}$ Expect to observe $\Lambda_{ t b} \!\! o \! \Lambda$ ee at high q², at best evidence at low q² (Run 1+2)

Are we seeing a coherent pattern in the data?

Conclusions

- Lepton universality is an interesting test of the SM and beyond.
- Tests with *b*-baryons are complementary and probe separate degrees of freedom

ullet LHCb is well suited to study $R(\Lambda_b)_\Lambda$ and $\,R(\Lambda_b)_{pK}$

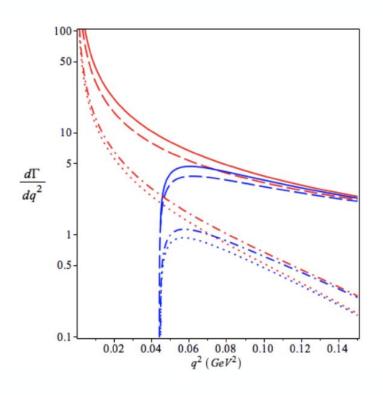
- Challenging experimental analyses (electrons, etc.)
- Calibration with charmonium modes essential.
- Looking forward to more fun with b-baryons :)

BEHIND THE SCENES

Decay mode	$q^2 [\text{GeV}^2/c^4]$	$pK^-\ell^+\ell^-$ invariant mass $[\text{GeV}/c^2]$
$\Lambda_b^0 \to pK^-e^+e^-$	0.1 - 6.0	4.80 - 6.32
$\Lambda_b^0 \rightarrow pK^- J/\psi (\rightarrow e^+ e^-)$	6.0 - 11.0	5.30-6.20
$\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$	0.1 - 6.0	5.30-5.95
$\Lambda_b^0 \rightarrow p K^- J/\psi (\rightarrow \mu^+ \mu^-)$	8.41 - 10.24	5.35-5.85

Table 2: Efficiency ratios between the nonresonant and resonant modes, $\epsilon(\Lambda_b^0 \to p K^- \ell^+ \ell^-)/\epsilon(\Lambda_b^0 \to p K^- J/\psi(\to \ell^+ \ell^-))$, for the muon final state and electron final state in the two trigger categories and data-taking periods. The uncertainties are statistical only.

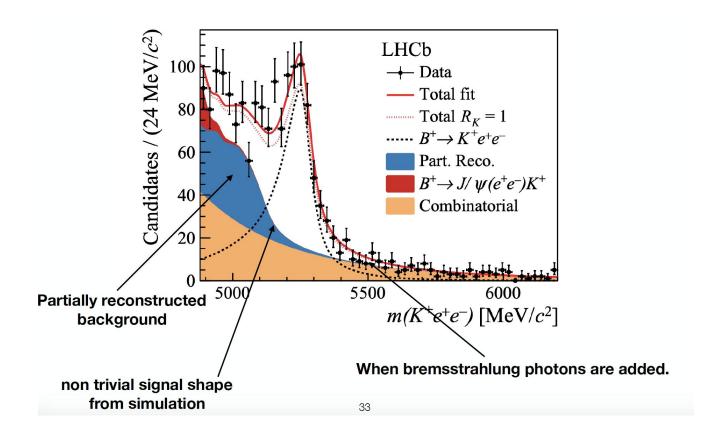
Channel	Run 1	Run 2		
	0.756 ± 0.010			
$e^{+}e^{-}$ (L0I)	0.862 ± 0.017	0.859 ± 0.018		
e^+e^- (L0E)	0.630 ± 0.013	0.631 ± 0.013		

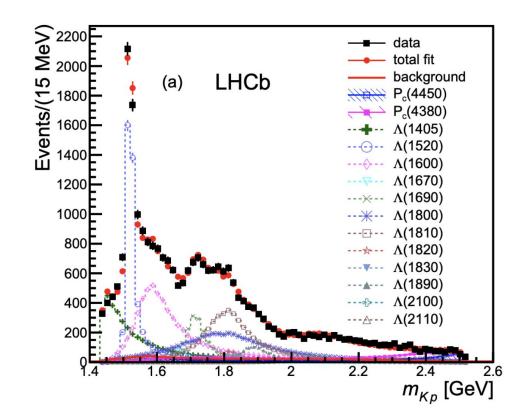

$$N^{i}(\Lambda_{b}^{0} \to pK^{-}\mu^{+}\mu^{-}) = r_{\mathcal{B}} \times \frac{N^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to \mu^{+}\mu^{-}))}{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})} \times \frac{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}\mu^{+}\mu^{-})}{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to \mu^{+}\mu^{-}))},$$

$$\begin{split} N^{i}(\Lambda_{b}^{0} \to pK^{-}e^{+}e^{-}) &= R_{pK}^{-1} \times r_{\mathcal{B}} \times \frac{N^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to e^{+}e^{-}))}{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})} \\ &\qquad \qquad \times \frac{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}e^{+}e^{-})}{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to e^{+}e^{-}))}, \end{split}$$

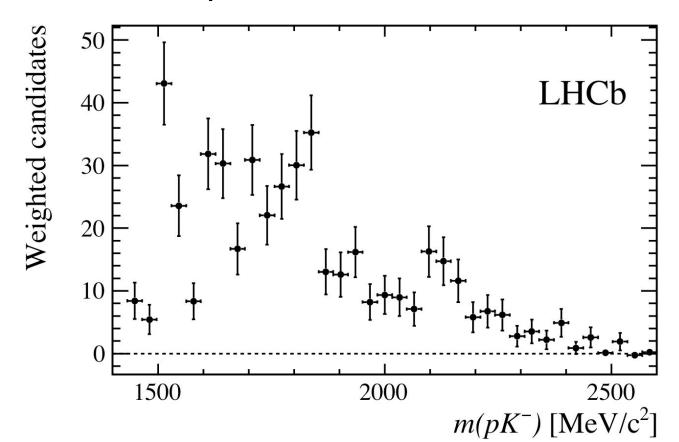
Source	Run 1	Run 2	Correlated	
Decay model	_	_	3.6	
Efficiency corrections	2.5	3.3	_	
Fit model	_	_	1.4	
Normalisation mode	0.9	1.4	_	
Total uncorrelated	2.6	3.6	<u> </u>	
Total correlated	_	_	3.9	

Source	Run 1 L0I	Run 1 L0E	Run 2 L0I	Run 2 L0E	Correlated
Decay model	_	_	_		1.9
Efficiency corrections	3.4	3.6	3.6	3.2	_
Normalisation modes	3.7	3.7	3.5	2.7	-
q^2 migration	_	_	_		2.0
$m_{\rm corr}$ cut efficiency	_	_	_	_	0.5
Fit model	_	_	_	_	5.2
Total uncorrelated	5.0	5.2	5.0	4.2	_
Total correlated	_	_	_	_	5.9


1605.07633


$$R_{K^*}[1.1, 6.0]^{SM} = 1.00 \pm 0.01_{QED}$$

$$R_{K^+}[1.0, 6.0]^{SM} = 1.00 \pm 0.01_{QED}$$


$$R_{pK}^{-1} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^-e^+e^-)}{\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi(\to e^+e^-))} / \frac{\mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi(\to \mu^+\mu^-))} ,$$

1507.03414

The hadronic spectrum

