b baryon physics in CMS

S. Polikarpov (on behalf of the CMS Collaboration's B-Physics Analysis Group)

b-baryon fest

5-6 November 2020

5 November 2020

Outline

- Previous CMS results on b baryons
- b-parking at CMS
- Prospects for future CMS analyses with beauty baryons

CMS results in b-baryon sector

 Λ_b^0 production, lifetime and polarization measurements

Phys. Lett. B 714 (2012) 136

for $p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}$ > 10 GeV and $|y^{\Lambda_{\mathrm{b}}}|$ < 2.0

 $c\tau_{\Lambda_{\rm b}^0} = 442.9 \pm 8.2 \,({\rm stat}) \pm 2.8 \,({\rm syst}) \,\mu{
m m}$

PRD 97 (2018) 072010 2 fb⁻¹ (7 TeV CMS CMS Data Fit Data Fit Signal Background Signal Background 400 2 5.64 5.66 m (J/ψ Λ) [GeV] COS 0 19.8 fb⁻¹ (8 TeV) + 5.2 fb⁻¹ (7 TeV 19.8 fb⁻¹ (8 TeV) + 5.2 fb⁻¹ (7 TeV) CMS 600 00 ts / 0.2 CMS (d)A00 Data Data Λ⁰_b - Fit Fit -- Signal Background Signal Background cosθ. COS 0 19.8 fb⁻¹ (8 TeV) + 5.2 fb⁻¹ (7 TeV) 19.8 fb⁻¹ (8 TeV) + 5.2 fb⁻¹ (7 TeV) CMS CMS Data Fit Signal Background + Data Fit -- Signal Background Λp 9 60C 5.64 cos 0 m (J/ψ ⊼) [GeV] 19.8 fb⁻¹ (8 TeV) + 5.2 fb⁻¹ (7 TeV) 19.8 fb⁻¹ (8 TeV) + 5.2 fb⁻¹ (7 TeV) CMS 3 60 CMS (d)11 400 Data Data Signal Background Signal Backgrou 20 cos θ. cosθ, $P = 0.00 \pm 0.06$ (stat) ± 0.06 (syst) Polarization

 $\begin{array}{ll} \textit{Parity-violating} & \alpha_1 = 0.14 \pm 0.14 \, (\textrm{stat}) \pm 0.10 \, (\textrm{syst}) \\ \textit{asymmetry} \end{array}$

CMS results in b-baryon sector

Beauty baryon spectroscopy: excited states and new decays

confirmed later by LHCb

Additional physics capabilities: b-parking

- The B-physics parking campaign has recorded ~10¹⁰ unbiased decays of beauty hadron during the Run-2018 exploiting the flexibility of CMS data taking model (as luminosity drops in the fill the L1 rate is kept ~constant & the HLT rate increased towards the end of each fill).
- Trigger/tag-side requires a muon coming from a displaced vertex (very likely it is from semileptonic b decay) ---We finished to reconstruct these 12B events at the end of 2019 $[http://cds.cern.ch/record/2704495] and we have on tape: Generic b hadrons B_{d}^{0} 4.0 \times 10^{9} 0$ $B^{\pm} 4.0 \times 10^{9} 0$
- **Probe side** will have an unbiased b hadron from the second b quark
- B-parked data set opens several prospects for b baryon studies

Mode	N_{2018}	f_B
	Generic b hadrons	
$B^0_{ m d}$	$4.0 imes 10^9$	0.4
B^{\pm}	$4.0 imes 10^9$	0.4
$B_{\rm s}$	$1.2 imes 10^9$	0.1
b baryons	$1.2 imes 10^9$	0.1
B_{c}	$1.0 imes 10^7$	0.001
Total	$1.0 imes10^{10}$	1.0

• The possibility to continue B-parking efforts in Run-3 is currently under discussion

Tag-side b→µX

Signal-side unbiased b hadron

decays

IP

CMS prospects in b baryon physics

- b baryon production measurements in the phase-space complementary to LHCb (pp) and ALICE (HI)
 - Observation of Λ_b^0 (Ξ_b) production in HI collisions after Run3/4 ?
- Rare decays with charmonium in the decay products (observations, Branching Fractions)
- Precision measurements with known decays (mass / lifetime / production / BF)
- New and improved spectroscopy measurements can be done in $[\Lambda_b^0 / \Xi_b / \Omega_b^-]$ + track(s)/ γ final states
 - Measurements of J^{PC} of the known excited states
 - By using converted photons, where CMS is very precise and competitive, we can also study radiative transitions
- Searches for Ξ_{bc} baryons in various final states
- Some radiative decays, when resolution is not crucial, can be measured exploring the usage of calorimeter photons in addition to conversions
 - $\circ \quad \Lambda_b^0 \rightarrow \Lambda \gamma ? \ \Xi_b^- \rightarrow \Xi^- \gamma ? \text{ (via FCNC } b \rightarrow s \gamma)$
- $b \rightarrow s/l$ transitions in baryon sector can also be studied, but are difficult to trigger (especially with electrons)
 - \circ $\Lambda_b^0 \rightarrow \Lambda \mu^+ \mu^-$ and $\Lambda_b^0 \rightarrow \Lambda e^+ e^-$ decays (*R*(Λ)) can be studied/searched for using parked data
 - $\Lambda_b^0 \rightarrow p K^{\mu} f$ very challenging without hadron identification (even for $\Lambda_b^0 \rightarrow J/\psi p K$ purity is low)
 - With more data, also $\Xi_b^- \to \Xi^- \mu^+ \mu^-$, $\Xi_b^- \to \Xi^- e^+ e^- (R(\Xi^-))$?

Summary

- CMS has provided important results in b baryon physics in the past, observing new states and decays and measuring Λ_b^0 properties
- Studies of spectroscopy, properties, and rare decays of beauty baryons will be continued
- The B-parking data set collected in 2018 provides additional opportunities
 - \circ For example b—sll transitions, in particular with electrons, can be accessed
 - It is considered to continue b-parking in Run-3

Backup

Run-3 & Phase-II (HL-LHC) scenario

Run-3 target (2022-2024): ~double the statistics collected so far Phase-II /HL-LHC (from 2027): increase the statistics by a factor ~10 (i.e. 3-4ab⁻¹)

Plan to access rare SM processes & perform precision measurements in the Flavour sector. Heavy Flavour potential (based on low-pT signatures) will suffer from the HL-LHC pileup conditions (<PU> ~140-200)

Availability of tracking information al L1-trigger is crucial to retain the full physics potential in this harsh environment

CMS Phase-II Upgrade (overview)

- replacement of electronics
- 10