Im DFG R

Is there a road to $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$at small q^{2} ?

Danny van Dyk
in collaboration with
N. Gubernari \& J. Virto (bounds, 2011.abcde)
M. Rahimi ($\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$, work in progress)

November 5th, 2020
Technische Universität München

Anatomy of the $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$Amplitudes

$$
\mathcal{A}_{\lambda}^{\chi}=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{\top}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

for $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

- eight complex amplitudes for $m_{\ell}=0\left(\lambda=\perp_{0}, \perp_{1},\left\|_{0},\right\|_{1}, \chi=L, R\right)$
- local matrix elements: $\mathcal{F}_{\lambda}^{(T)}$ known from lattice QCD
- can be systematically improved see talk by Stefan Meinel
- non-local matrix elements dominated by time-ordered product $T\left\{J_{\mathrm{em}}^{\mu}(x),[\bar{c} \ldots c \bar{s} \ldots b](0)\right\}$
- focus of this talk

Spectrum

strategy

- compute \mathcal{H} at spacelike q^{2}
- extrapolate to timelike $q^{2} \leq 4 M_{D}^{2}$
- include information from hadronic decays $\Lambda_{b} \rightarrow \Lambda \psi_{n}$

Compute Status $B \rightarrow K^{(*)}$ vs $\Lambda_{b} \rightarrow \Lambda$

contribution to \mathcal{H}_{λ}	$B \rightarrow K^{(*)}$	$\boldsymbol{\Lambda}_{b} \rightarrow \boldsymbol{\Lambda}$
local OPE $\left(q^{\mu} \rightarrow \infty\right)$	\checkmark	\checkmark
form factors	\checkmark	\checkmark
hard spectator inter.	(LQCD+LCSR)	(LQCD, large unc.)
subleading OPE $\left(\left\|q^{2}\right\| \rightarrow \infty\right)$	\checkmark	-
(QCDF)	\checkmark	\checkmark
soft-gluon matrix elem.	\checkmark	-

LQCD: lattice QCD LCSR: light-cone sum rule QCDF: QCD factorization

Compute Status $B \rightarrow K^{(*)}$ vs $\Lambda_{b} \rightarrow \Lambda$

Compute Soft gluon matrix elements

at subleading power in the OPE, need matrix elements of a non-local operator

$$
\bar{s}(0) \gamma^{\rho} P_{L} G^{\alpha \beta}\left(-u n^{\mu}\right) b(0)
$$

similar what is needed for $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} K^{-}$; see talk by Tobias Huber
for $B \rightarrow K^{(*)}$ transitions

- matrix element has been calculated in light-cone sum rules
[Khodjamirian et al, 1006.4945]
- depends crucially on three-particle (i.e. būG) light-cone distribution amplitudes
can we apply this to $\Lambda_{b} \rightarrow \Lambda$ transitions?
- light-cone sum rule starts with four-particle budG light-cone distribution amplitudes
- these have not even been classified yet! see talk by Thorsten Feldmann volunteers?
- unlikely to be computed any time soon...

Extrapolate New parametrisation w/ dispersive bound

based on preliminary work
matrix elements \mathcal{H} arise from non-local operator

$$
O^{\mu}(q ; x) \sim \int e^{i q \cdot y} T\left\{J_{\mathrm{em}}^{\mu}(x+y), \mathcal{O}_{\bar{s} b \bar{c} c}(x)\right\}
$$

construct four-point operator to derive a dispersive bound

- define matrix element of "square" operator

$$
\left[\frac{q^{\mu} q^{\nu}}{q^{2}}-g^{\mu \nu}\right] \Pi\left(q^{2}\right) \equiv \int e^{i q \cdot x}\langle 0| T\left\{O^{\mu}(q ; x) O^{\dagger, \nu}(q ; 0)\right\}|0\rangle
$$

- for $q^{2}<0$ we find that $\Pi\left(q^{2}\right)$ has two types of discontinuities
- from intermediate unflavoured states ($c \bar{c}, \bar{c} \bar{c} c \bar{c}, . .$.
- from intermediate $b \bar{s}$-flavoured states ($b \bar{s}, b \bar{s} g, b \bar{s} c \bar{c}, . .$.

Extrapolate Cuts of Π

Extrapolate Cuts of Π

- from intermediate unflavoured states ($c \bar{c}, c \bar{c} c \bar{c}, \ldots)$

- from intermediate unflavoured states ($c \bar{c}, c \bar{c} c \bar{c}, \ldots)$
- from intermediate $b \bar{s}$-flavoured states $(b \bar{s}, b \bar{s} g, b \bar{s} c \bar{c}, \ldots)$

Extrapolate Dispersion relation for $\boldsymbol{\Pi}$

dispersive representation of the $b \bar{s}$ contribution to derivative of Π

$$
\chi\left(Q^{2}\right) \equiv \frac{1}{2!}\left[\frac{d}{d Q^{2}}\right]^{2} \frac{1}{2 i \pi} \int_{\left(m_{b}+m_{s}\right)^{2}}^{\infty} d s \frac{\operatorname{Disc}_{b \bar{s}} \Pi(s)}{s-Q^{2}}
$$

- can be computed in the local OPE $\rightarrow \chi^{\text {OPE }}$
- can be expressed in terms of the matrix elements $\mathcal{H}_{\lambda} \rightarrow \chi^{\text {had }}$
- for $Q^{2}<0$ the object χ is a sum / integral of positive definite terms
- equate the two to derive a dispersive bound
a suitable paramtrisation with outer functions ϕ_{λ} and orthonormal functions $f_{n}\left(q^{2}\right)$

$$
\hat{\mathcal{H}}_{\lambda}\left(q^{2}\right) \propto \phi_{\lambda}\left(q^{2}\right) \mathcal{H}_{\lambda}\left(q^{2}\right) \propto \sum_{n} a_{\lambda, n} f_{n}\left(q^{2}\right)
$$

leads to a diagonal bound

$$
\sum_{\lambda} \sum_{n}\left|a_{\lambda, n}\right|^{2} \leq 1
$$

Extrapolate Dispersion relation for $\boldsymbol{\Pi}$

why/how is this relevant to $\Lambda_{b} \rightarrow \Lambda$?

1. the $\Lambda_{b} \rightarrow \Lambda$ matrix elements are bounded, giving us control of the truncation error in their parametrisation
2. even if we do not know the theory predictions of the non-local contributions beyond leading-power (\rightarrow compute part), we can reliably connect the spacelike and timelike q^{2} regions with each other
3. will likely depend more strongly on data-driven information in $\Lambda_{b} \rightarrow \Lambda$ than in $B \rightarrow K^{(*)}$
4. combining $\Lambda_{b} \rightarrow \Lambda, B \rightarrow K^{(*)}$ and $B_{S} \rightarrow \phi$ in one analysis will yield stronger constraints on the parameters than the individual transitions would

- full angular distribution of $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) J / \psi$ recently measured for the first time
- measurements constrain residues of the non-local matrix elements

	7 TeV	8 TeV	13 TeV
M_{1}	$0.374 \pm 0.007 \pm 0.003$	$0.373 \pm 0.004 \pm 0.002$	$0.380 \pm 0.003 \pm 0.001$
M_{2}	$0.253 \pm 0.014 \pm 0.005$	$0.254 \pm 0.008 \pm 0.003$	$0.239 \pm 0.006 \pm 0.002$
M_{4}	$-0.286 \pm 0.017 \pm 0.008$	$-0.268 \pm 0.011 \pm 0.009$	$-0.273 \pm 0.008 \pm 0.006$
M_{5}	$-0.157 \pm 0.025 \pm 0.008$	$-0.181 \pm 0.015 \pm 0.007$	$-0.179 \pm 0.011 \pm 0.005$
M_{7}	$0.051 \pm 0.029 \pm 0.005$	$0.025 \pm 0.018 \pm 0.003$	$0.022 \pm 0.013 \pm 0.002$
M_{9}	$-0.017 \pm 0.029 \pm 0.005$	$-0.011 \pm 0.018 \pm 0.003$	$-0.027 \pm 0.013 \pm 0.002$
M_{11}	$0.005 \pm 0.014 \pm 0.004$	$0.003 \pm 0.009 \pm 0.004$	$-0.005 \pm 0.006 \pm 0.002$
M_{12}	$-0.004 \pm 0.018 \pm 0.005$	$0.010 \pm 0.011 \pm 0.004$	$0.006 \pm 0.008 \pm 0.003$
M_{14}	$0.007 \pm 0.025 \pm 0.007$	$-0.015 \pm 0.016 \pm 0.007$	$-0.009 \pm 0.012 \pm 0.003$
M_{15}	$-0.027 \pm 0.032 \pm 0.008$	$0.009 \pm 0.021 \pm 0.008$	$-0.006 \pm 0.016 \pm 0.005$
M_{17}	$0.008 \pm 0.039 \pm 0.006$	$-0.002 \pm 0.025 \pm 0.004$	$0.011 \pm 0.018 \pm 0.003$
M_{19}	$-0.006 \pm 0.038 \pm 0.004$	$-0.015 \pm 0.025 \pm 0.004$	$-0.003 \pm 0.018 \pm 0.002$
\cdots	$\sim \sim$		

see talk by Tom Blake

- I think there is a clear road toward a reliable description of the non-local matrix elements in $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$
- key is a combined theory + data driven approach, since theory calculations still do and will continue to lack behind the simpler case of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$for the forseeable future
- nevertheless, $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$measurements are important
- to cross check of the b anomalies
- to provide complementary constraints on the Wilson coefficients
- to have more powerful constraints on the hadronic nuisance parameters in $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

