

Is there a road to $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ at small q^2 ?

Danny van Dyk

in collaboration with

N. Gubernari & J. Virto (bounds, 2011.abcde)

M. Rahimi ($\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$, work in progress)

November 5th, 2020

Technische Universität München

Anatomy of the $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ Amplitudes

$$\mathcal{A}_{\lambda}^{\chi} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^{\mathsf{T}}(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

for $\Lambda_b
ightarrow \Lambda \mu^+ \mu^-$

- eight complex amplitudes for $m_{\ell} = 0$ ($\lambda = \perp_0, \perp_1, \parallel_0, \parallel_1, \chi = L, R$)
- ▶ local matrix elements: $\mathcal{F}_{\lambda}^{(T)}$ known from lattice QCD
 - can be systematically improved see talk by Stefan Meinel
- ▶ non-local matrix elements dominated by time-ordered product $T\{J_{em}^{\mu}(x), [\overline{c}...c\overline{s}...b](0)\}$
 - focus of this talk

Spectrum

- strategy
 - compute \mathcal{H} at spacelike q^2
 - extrapolate to timelike $q^2 \leq 4M_D^2$
 - include information from hadronic decays $\Lambda_b \rightarrow \Lambda \psi_n$

Compute Status $B \to K^{(*)}$ vs $\Lambda_b \to \Lambda$

contribution to \mathcal{H}_{λ}		$B \to K^{(*)}$	$\Lambda_b o \Lambda$	
local OPE $(q^{\mu} ightarrow \infty)$ form factors		√ √ (LQCD+LCSR)	√ ✓ (LQCD, large unc.)	
hard spectator inter.		(LQCD+LCSK) √ (QCDF)		
subleading OPE $(q^2 \rightarrow \infty)$ soft-gluon matrix elem.		✓ ✓ (LCSR)	✓ _	
QCD: lattice QCD LCSR: light-cone sum rule		QCDF: QCD factorization		

Compute Status $B \to K^{(*)}$ vs $\Lambda_b \to \Lambda$

		3/	1

contribution to \mathcal{H}_λ	$B \to K^{(*)}$	$\Lambda_b ightarrow \Lambda$
local OPE $(q^{\mu} ightarrow \infty)$	\checkmark	\checkmark
form factors	✓ (LQCD+LCSR)	✓ (LQCD, large unc.)
hard spectator inter.	(QCDF)	_
subleading OPE $(q^2 ightarrow \infty)$	\checkmark	\checkmark
soft-gluon matrix elem.	✓ (LCSR)	_
LQCD: lattice QCD LCSR: light-cone sum rule		QCDF: QCD factorization

Compute Soft gluon matrix elements

at subleading power in the OPE, need matrix elements of a non-local operator

 $\overline{s}(0)\gamma^{\rho}P_{L}G^{\alpha\beta}(-un^{\mu})b(0)$

similar what is needed for $\Lambda_b^0 \to \Lambda_c^+ K^-$; see talk by Tobias Huber

for $B \to K^{(*)}$ transitions

▶ matrix element has been calculated in light-cone sum rules

[Khodjamirian et al, 1006.4945]

► depends crucially on three-particle (i.e. buG) light-cone distribution amplitudes
[Gubernari,Virto,DV

can we apply this to $\Lambda_b \rightarrow \Lambda$ transitions?

- light-cone sum rule starts with four-particle budG light-cone distribution amplitudes
- ► these have not even been classified yet! see talk by Thorsten Feldmann

volunteers?

unlikely to be computed any time soon...

based on preliminary work [Gubernari/Virto/DvD 2011.abcde]matrix elements \mathcal{H} arise from non-local operator

$$\mathcal{O}^{\mu}(q; x) \sim \int e^{iq \cdot y} T\{J^{\mu}_{em}(x+y), \mathcal{O}_{\overline{s}b\overline{c}c}(x)\}$$

construct four-point operator to derive a dispersive bound

define matrix element of "square" operator

$$\left[\frac{q^{\mu}q^{\nu}}{q^2} - g^{\mu\nu}\right] \prod(q^2) \equiv \int e^{iq \cdot x} \langle 0| T\{O^{\mu}(q; x)O^{\dagger, \nu}(q; 0)\} |0\rangle$$

- ▶ for $q^2 < 0$ we find that $\Pi(q^2)$ has two types of discontinuities
 - ▶ from intermediate unflavoured states (*cc̄*, *cc̄cc̄*, ...)
 - ► from intermediate *b*s̄-flavoured states (*b*s̄, *b*s̄*g*, *b*s̄*c*c̄, ...)

Extrapolate Cuts of **Π**

Extrapolate Cuts of **Π**

▶ from intermediate unflavoured states (*cc̄*, *cc̄cc̄*, ...)

Extrapolate Cuts of **Π**

- ▶ from intermediate unflavoured states (*cc̄*, *cc̄cc̄*, ...)
- ▶ from intermediate bs-flavoured states (bs, bsg, bscc, ...)

Extrapolate Dispersion relation for **Π**

dispersive representation of the $b\overline{s}$ contribution to derivative of Π

$$\chi(Q^2) \equiv \frac{1}{2!} \left[\frac{d}{dQ^2} \right]^2 \frac{1}{2i\pi} \int_{(m_b+m_s)^2}^{\infty} ds \; \frac{\mathsf{Disc}_{b\overline{s}} \, \Pi(s)}{s-Q^2}$$

- $\blacktriangleright\,$ can be computed in the local ${\rm OPE} \to \chi^{\rm OPE}$
- ► can be expressed in terms of the matrix elements $\mathcal{H}_{\lambda} \rightarrow \chi^{had}$
- For Q² < 0 the object x is a sum / integral of positive definite terms</p>
- equate the two to derive a dispersive bound

a suitable paramtrisation with outer functions ϕ_{λ} and orthonormal functions $f_n(q^2)$

$$\hat{\mathcal{H}}_{\lambda}(q^2) \propto \phi_{\lambda}(q^2) \mathcal{H}_{\lambda}(q^2) \propto \sum_n a_{\lambda,n} f_n(q^2)$$

leads to a diagonal bound

$$\sum_{\lambda} \sum_{n} |a_{\lambda,n}|^2 \le 1$$

why/how is this relevant to $\Lambda_b \rightarrow \Lambda$?

- 1. the $\Lambda_b\to\Lambda$ matrix elements are bounded, giving us control of the truncation error in their parametrisation
- 2. even if we do not know the theory predictions of the non-local contributions beyond leading-power (\rightarrow compute part), we can reliably connect the spacelike and timelike q^2 regions with each other
- 3. will likely depend more strongly on data-driven information in $\Lambda_b \to \Lambda$ than in $B \to K^{(*)}$
- 4. combining $\Lambda_b \to \Lambda$, $B \to K^{(*)}$ and $B_s \to \phi$ in one analysis will yield stronger constraints on the parameters than the individual transitions would

- full angular distribution of $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi)J/\psi$ recently measured for the first time [LHCb PAPER-2020-005 2004.10563]
- measurements constrain residues of the non-local matrix elements

	7 TeV	8 TeV	13 TeV	× ³⁴ ₃₃ LHCb
M_1	$0.374 \pm 0.007 \pm 0.003$	$0.373 \pm 0.004 \pm 0.002$	$0.380 \pm 0.003 \pm 0.001$	
M_2	$0.253 \pm 0.014 \pm 0.005$	$0.254 \pm 0.008 \pm 0.003$	$0.239 \pm 0.006 \pm 0.002$	27
M_4	$-0.286 \pm 0.017 \pm 0.008$	$-0.268 \pm 0.011 \pm 0.009$	$-0.273 \pm 0.008 \pm 0.006$	23
M_5	$-0.157 \pm 0.025 \pm 0.008$	$-0.181 \pm 0.015 \pm 0.007$	$-0.179 \pm 0.011 \pm 0.005$	19
M_7	$0.051 \pm 0.029 \pm 0.005$	$0.025 \pm 0.018 \pm 0.003$	$0.022 \pm 0.013 \pm 0.002$	150
M_9	$-0.017 \pm 0.029 \pm 0.005$	$-0.011 \pm 0.018 \pm 0.003$	$-0.027 \pm 0.013 \pm 0.002$	14
M_{11}	$0.005 \pm 0.014 \pm 0.004$	$0.003 \pm 0.009 \pm 0.004$	$-0.005 \pm 0.006 \pm 0.002$	20.5
M_{12}	$-0.004 \pm 0.018 \pm 0.005$	$0.010 \pm 0.011 \pm 0.004$	$0.006 \pm 0.008 \pm 0.003$	7
M_{14}	$0.007 \pm 0.025 \pm 0.007$	$-0.015 \pm 0.016 \pm 0.007$	$-0.009 \pm 0.012 \pm 0.003$	
M_{15}	$-0.027 \pm 0.032 \pm 0.008$	$0.009 \pm 0.021 \pm 0.008$	$-0.006 \pm 0.016 \pm 0.005$	
M_{17}	$0.008 \pm 0.039 \pm 0.006$	$-0.002 \pm 0.025 \pm 0.004$	$0.011 \pm 0.018 \pm 0.003$	-0401055555555585888888888888888888888888
M_{19}	$-0.006 \pm 0.038 \pm 0.004$	$-0.015 \pm 0.025 \pm 0.004$	$-0.003 \pm 0.018 \pm 0.002$	101 _i
3.0	0.015 1.0.005 1.0.000	0.007 1.0.000 1.0.005	0.000 1.0.010 1.0.005	

see talk by Tom Blake

- ► I think there is a clear road toward a reliable description of the non-local matrix elements in $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
- ► key is a combined theory + data driven approach, since theory calculations still do and will continue to lack behind the simpler case of $B \rightarrow K^{(*)}\mu^+\mu^-$ for the forseeable future
- ▶ nevertheless, $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ measurements are important
 - ► to cross check of the b anomalies
 - ► to provide complementary constraints on the Wilson coefficients
 - ► to have more powerful constraints on the hadronic nuisance parameters in $B \rightarrow K^{(*)}\mu^+\mu^-$