

Saclay, 15.12.2017

HOME AUTOMATION

Elizabeth Locci, CEA-IRFU

INNOVATIVE HEALTH CARE

Ten Targets for Wireless Medicine

Disease	No. Affected	Wireless Solutions
Alzheimer's	5 M	Vital signs, location, activity, balance
Asthma	23 M	RR, FEV1, Air quality, oximetry, pollen count
Breast cancer	3 M	Ultrasound self-exam Web
COPD	10 M	RR, FEV1, Air quality, oximetry
Depression	21 M	Med Compliance, Activity, Communication
Diabetes	24 M	Glucose, Hemoglobin A1C
Heart Failure	5 M	Cardiac pressures, weight, BP, fluid status
Hypertension	74 M	Continuous BP, Med compliance
Obesity	80 M	Smart scales, Glucose, Caloric in/out, Activity
Sleep Disorders	40 M	Sleep phases, quality, apnea, vital signs

Savings With Remote Monitoring Per Year

Disease	Emergency Care	Hospitalization	Nursing Home	Total Savings
Congestive Heart Failure	\$50 M	\$7.4 B	\$2.7 B	\$10.1 Billion
Diabetes	\$100 M	\$3.5 B	\$2.5 B	\$6.1 Billion
Chronic Obstructive Pulmonary Disease	\$200 M	\$2.9 B	\$1.8 B	\$4.9 Billion

October 2008 Report, Vital Signs via Broadband; Windhover Information

WIRELESS IMPLANTABLE MEDICAL DEVICES

AGRICULTURE AUTOMATION

15.12.2017

SMART TRANSPORTATION

INDUSTRY AUTOMATION

Points at nuclear plants conducive to wireless technology use

Nuclear plant system	Wireless measurement(s)	Application
Heat Exchangers	Temperature	Monitor ambient temperature to take into account the effects of such factors as seasonal changes in weather.
Secondary Side Valves	Position Indication	Replace periodic, labor-intensive valve indication readings with continuously monitored wireless measurements.
Inlet Water Intake	Level, Temperature, Flow	Monitor factors that affect performance such as changes in level, seasonal temperature variations, and intake flow.
Rotating Equipment (pumps, valves, motors, compressors, fans)	Temperature, Vibration, Motor Current	Monitor temperatures, vibration signatures, and load fluctuations to assess condition and improve performance.
Diesel Generators	Temperature, Level, Vibration, Motor Current	Augment existing sensor readings to provide redundancy and comprehensive performance assessment.
Spent Fuel Dry Cask Storage	Temperature, Radiation	Eliminate need for underground cabling and conduit by monitoring temperature and radiation with wireless sensors.
Weather Station	Temperature, Wind Velocity, Pressure, Humidity, etc.	Improve monitoring by replacing failure-prone equipment and cabling with wireless measurements.

Current wireless use in nuclear power plants

15.12.2017

SMART ENERGY

THIS IS WHAT IS CALLED THE INTERNET OF THINGS

ANYTIME, ANYWHERE, BY ANYONE AND ANYTHING

THE HEP COMMUNITY IS NOT AN EXCEPTION !

It's time to come together. We all have the power to change, so what are we waiting for? Yest Althus-Betrand

The WADAPT (Wireless for Data and Power Transmission) Project

formed to identify specific needs of projects that might benefit from wireless technologies

- HEP Context & Motivation for wireless
- Status of the Collaboration
- > Introduction to millimeter Wave, focus on 60 GHz
- Features of the 60 GHz band
- RF integrated circuit architecture and design
- > Antenna requirement, design and integration
- > Feasibility tests for HEP
- Technology roadmap
- Demonstration

CMS alone contains 22,780 separate cables, many of them with multiple strands, that put end-to-end would stretch 725 kilometers, or 450 miles—roughly the distance from Brussels to Geneva or Chicago to Pittsburgh. Laying and connecting all that CMS cable requires 38 people working full-time. Archana Sharma, CERN

HEP Context

Large data readout

Example: ATLAS inner detector

350 000 channels

Pixel Detector

Bandwidth

- □ High demand on **bandwidth** in present & future experiments
- Especially true for highly granular tracking detectors operated at high beam luminosities

Example: ATLAS Phase II New Inner Tracker Pixel Detector

- 1m radius pixel detector with five barrel layers and four end-cap rings and a silicon strip detector with four layers and six end-cap disks
- \circ Readout at up to 4MHz (25µs) LO rate
- Downlink: Broadcast trigger and control signal at 160Mb/s
- Uplink: over 10000 links at 5 Gb/s

Distance between stave and opto-electrical converters: 5 -7 m on copper cables (twisted pair, TwinAx or Flex cables)

Massive cable plants

Impact on the installation and operation

- Cables and connectors are fragile
- Cable path is not so flexible
- Design constraints
- Significant cost contribution

Impact on the measurements

- Multiple scattering and nuclear interactions
- Energy resolution (calorimeters)
- Dead-zone areas

Multiple scattering in ATLAS/CMS multiple scattering is the main contribution to the momentum resolution for pt<50 GeV/c at η=0.</p>

The uncertainty of the track parameters is affected by multiple scattering of the charged particle by the material of the spectrometer.

A particle of momentum p traversing a length x of material, with a radiation length X0, is deflected by multiple Coulomb scattering from nuclei.

The projection of this deflection angle on a plane containing the original direction is roughly Gaussian distributed around zero and

$$\theta_{\rm rms} = \frac{13.6\,{\rm MeV}}{\beta p} \sqrt{\frac{x}{X_0}}.$$

Assuming that the position accuracy is dominated by multiple scattering,

$$\frac{\delta p_{\rm t}}{p_{\rm t}} = \frac{1}{0.3B} \frac{0.0136}{\beta} \sqrt{\frac{C_N}{X_0 L}}$$

L = length of the spectrometer C_N depends on the number of position measurements (C_N = 1.3 in this example) $\frac{\delta p_{t}}{p_{t}} = (1.6 \oplus 0.034 \times p_{t}(\text{GeV}))\% \text{ ATLAS*}$ $\frac{\delta p_{t}}{p_{t}} = (0.8 \oplus 0.015 \times p_{t}(\text{GeV}))\% \text{ CMS*}$

for a spatial resolution of 30 μ m

 In both detectors the multiple scattering is the main contribution to the momentum resolution for pt<50 GeV at η=0.

Multiple scattering also affects

- precision of the alignment
- track extrapolation to the vertex
- trigger efficiency

Figure 8. Breakdown of the contribution of the different effects to the momentum resolution as a function of the muon transverse momentum for the ATLAS muon spectrometer [12]; left: barrel ($|\eta| < 1.5$); right: end-caps ($|\eta| > 1.5$).

from https://iopscience.iop.org/article/10.1088/1367-2630/9/9/336/pdf

* perhaps not the most up-to-date numbers

Calorimeter energy-resolution deterioration by material

over the energy range 10 to 50 GeV, the **calorimeter resolution is deteriorated** by a factor of 1.7 to 1.3 **by the presence of additional material**

(from http://lappweb.in2p3.fr/~chefdevi/Detector_reports/Calorimetry/Fabjan.pdf)

Dead spaces

15.12.2017

Cables cause additional dead layers

- → signal degradation,
- → **dead spaces** between the calorimeter towers
- → reduced hermeticity.

Readout topologies

- Fast signal transfer & efficient detector partition in topological regions of interest facilitate fast track trigger decisions
- Application specific considerations :
 - link density

•••

15.12.201

signal reflection & transmission

- Minimize material budget of cables/connector
 Reduction of massive services between barrel and endcap disks —> limited number of X₀
- Direct communication between layers via radial readout
 Axial readout induce important latencies
- More flexible transceiver placement
- **D** Point-to-Multipoint links, interlayer intelligence
- **Data readout follows event topology enabling fast triggering**

Elizabeth Locci, CEA-IRFU

An efficient track-trigger may offer groundbreaking opportunities for new physics searches (<u>https://arxiv.org/abs/1705.04321</u>) by increasing sensitivity to

- processes with small branching fractions
- Iong-lived particles

by extending the track trigger to off-pointing tracks

Examples:

- rare Higgs decays into new particles with lifetime ~ a few mm
- dark sector cascades
- low mass jetty final states

At future hadron colliders the high collision rates and demands for high granularity will significantly increase the data rate coming out of the detector.

Triggering of both low energy anomalous objects, such as disappearing tracks, and high pT objects demands more sophisticated high data volume readouts and high speed pattern recognition, especially under the onset of pileup.

The inclusion of the timing information in the event reconstruction can almost fully offset the increased particle density foreseen at future hadron colliders (HL-LHC, FC-hh)

Examples: at HL-LHC

ATLAS/CMS

10-15% of the vertices recognized as a single vertex are actually two vertices overlapping in space .

LHCb

Degradation of factor 10 in assigning the b and c hadrons to their primary vertex

With a timing capability, performance at low luminosity can be recovered

ATLAS/CMS

Timing associated to each track; 30-40 ps precision is needed.

• LHCb

Timing associated to each point of the track; 100 ps precision may be enough. Would the transceiver provide this capability?

First draft in 2015: arXiv:1511.05807 [physics.ins-det] Since then:

- Multiple talks:
 - seminars in Saclay, CERN
 - contributions to FCC weeks
 - contributions to conferences:
 - Vertex 2016 **PoS Vertex2016 (2017) 040**, Conference: <u>C16-09-26</u> <u>Proceedings</u>
 - Connecting the dots / Intelligent Trackers 2017 Workshop **EPJ Web Conf. 150 (2017) 00002** ,DOI: <u>10.1051/epjconf/201715000002</u>
 - EPS-HEP2017 proceedings
- **D** Publications:
 - Nucl.Instrum.Meth. A830 (2016) 417-426 ,DOI: <u>10.1016/j.nima.2016.06.016</u>
 - Lol, CERN-LHCC-2017-002 ; LHCC-I-028. 2017, accepted by LHCC
 - **TP**, first draft examined in closed session of LHCC, May 2017.

LHCC comments :

- Considered it worth of further development, encouraging the proponents to prepare a full technical proposal following some recommendations
- The committee believes there is tremendous value in the research being proposed and is eagerly looking forward to receiving an updated Technical Proposal taking into account the above recommendations and suggestion
- The LHCC would like to thank the proponents for the submission of a Technical Proposal concerning a very timely development of a new technology for particle physics experiments that has the potential to realize a new paradigm for data and power transmission in particle physics detectors

LHCC recommendations :

- A research program (for data and power wireless transmission), within a 3-yr timeframe, with clearly spelled-out milestones and deliverables focused on a demonstrator based on specific technologies, the configuration of which would allow to set a proof-of-principle for a use in a future HEP experiment. Done (see next slide)
- A detailed development plan describing the organization and structure of the project, sharing of responsibilities and description of resources involved for each sub-project, a description of the organization and operation of the collaboration and its governance, and who (nominally) is responsible for the different WPs, and who is contributing from which institute at what number of FTEs to the different milestones and deliverables, should be provided. Pending
- A clear articulation of the added value for this proposed R&D to become a CERN RD Collaboration, in particular, a detailed list and timeframe of CERN resources and support, that the project would need or could benefit. Done

|--|

Research program

WPO	Project Management
T0.1	Project coordination, risk management and financial management
T0.2	IPR Management
WP1	Global requirement, architecture & system studies
T1.1	Global system requirements
T1.2	Study of integration of mmw links in LHC
T1.3	Sub-THz architecture and system definition
WP2	60GHz experiments and proof of concept
T2.1	Prototypes and commercial products environmental tests
T2.2	Interfacing vertex detector ADC with wireless readout
T2.3	Test of wireless data transfer in HL-LHC environement
WP3	Integrated transceiver design
T3.1	Design of optimized transceiver at 60GHz
T3.2	
WP4	Signal confinment & antennna design
T4.1	Compact and directive 60GHz antenna design for point to point link
T4.2	Sub-THz integrated antenna design
T4.3	Intra layer confinement and crosstalk mitigations
WP5	Wireless power transfer
T5.1	Study of deca cm range Wireless Power Transmission
T5.2	Prototyping and experiments
WP6	Dissemination and exploitation
T6.1	Dissemination activities
T6.2	Exploitation

	1				Among A	1									100	ar 2										year a					
	1	2	 4	5	6	7	8	10	11 1	2 18	34	15	36	17	18	29	20	21	22	28 24	25	26	27	28	29	X0	11 AL	1 23	34	25	26
WPO Project Management																															
10.1 Project coordination, risk management and financial management	1 1									4.4										00.1	3										84.1.5
10.2 PR Management		_							8	2.5										08.3	a -							_			863.8
WP1 tilulal requirement, architecture & system studies																															
71.1 Olokal system regularments					BLLL																										
71-2 Study of Integration of mmw Inia In LHC					8624																										
T1.3 Sub-TH2 architecture and system definition																															
WP2 400Hz experiments and proof of concept																															
T2.1 Prototypes and commental products environmental tests					30.111																										
T2.2 Interfacing vertex detector ADC with wireless readout	1 1																												64.3.4		
T2.3 Test of wheless data transfer In HL-LHC environment																															10.81
WP3 Integrated transceiver design																												_			_
13.1 Design of optimized transplayer at 600H2	1											10,11		98.11			Ser 13				10.13			BALA			04.1	<u> </u>			
76.2																ML22		0511		08.3	3				622		064	.			18.2.4
WP4 Signal confirment & antennas design																															
16.1 Compact and directive 600Hz antenna design for point to point link	1																							_			OK.	a 👘			
16.23 Jub-THs Integrated antenna design	1															MI 3.1				063	4				412.2						9433
16.8 Intra layer confinement and prosetalk mitigations																															Date:
WP5 Wireless power transfer																															_
Th.1 Study of dece on range Wireless Power Transmission	1																														-
15.2 Prototyping and experiments	1																														942.5
WPE Dissemination and exploitation																															
18.1 Obsembation autivities															0511																86.1.2
18.2 Explortation															063.1																8633

active period deliverable

Development plan: sharing of responsibilities, resources:

For this we need:

- more partners in France, and from other institutes worldwide.
- ressources:
 - will be considered in the "blue sky" line of AIDA++ More is needed!

Highlights from EPS 2017

Paris Sphicas CERN & NKUA (Athens) EPS HEP 2017, Venice, July 12, 2017

Mentionned as:

"THE FUTURE"

Detector developments

LET'S BE PART OF IT!

Yes, it has never been done before for our detectors: Most of the things we are using today were never done before and have required R&D

We are very busy with upgrades: Quite true! We need extra resources!

Let's overcome this! Let's prepare the future now!

"This really is an innovative approach, but I'm afraid we can't consider it. It's never been done before."

a.bacal