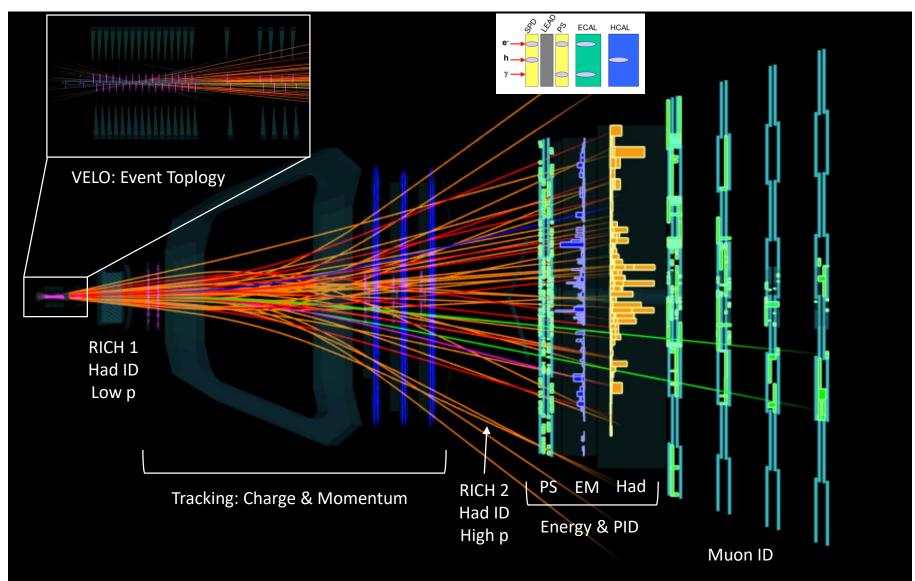
Calorimeter reconstruction with computer vision at LHCb

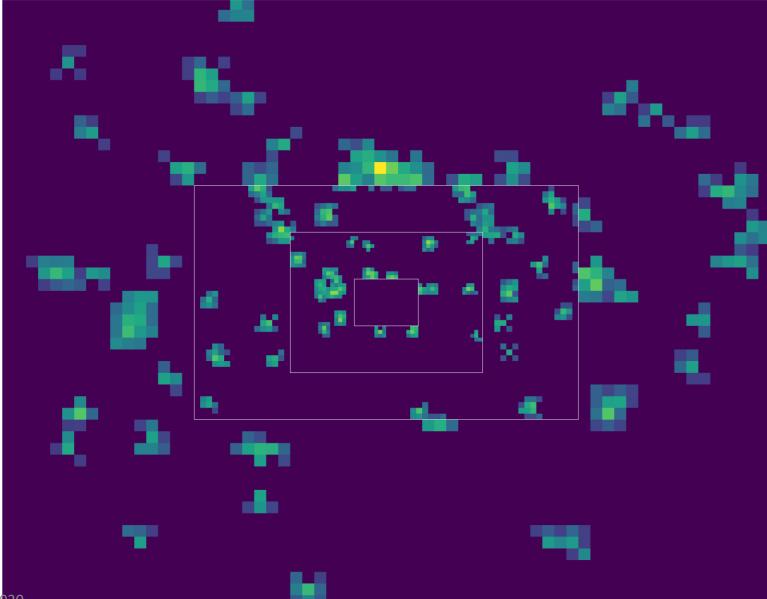
João Coelho in Collaboration with B. Delaney (Cambridge) and M. Mazurek (NCBJ)

22 January 2020

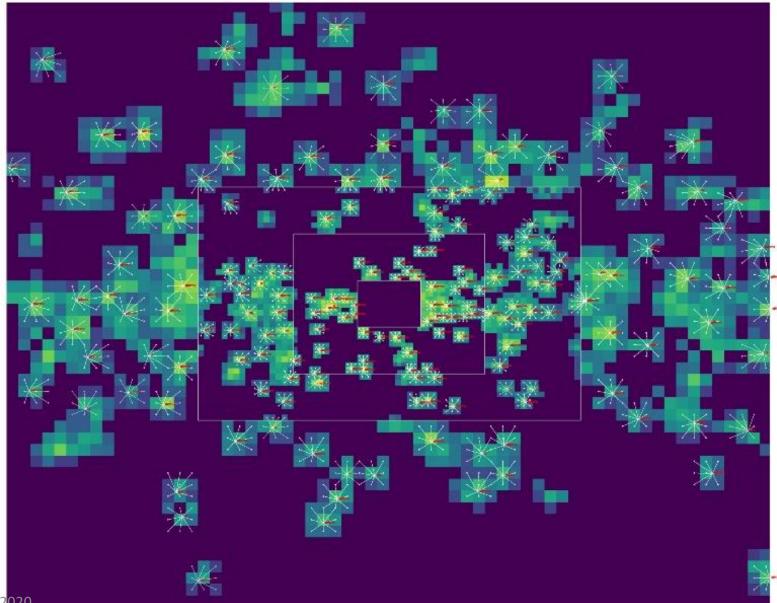
The LHCb Detector



A Calorimeter Event

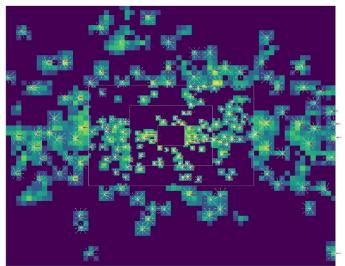


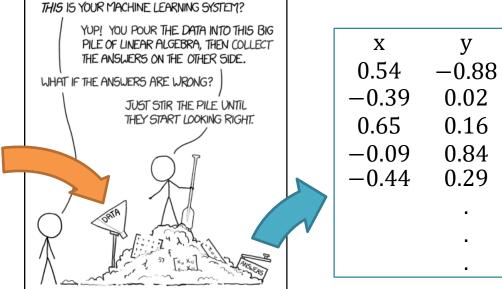
Things can get busy!



The Goal

• Our goal is to create a neural network architecture to process calorimeter images and output a set of clusters with position and energy information





E

1.24

1.54

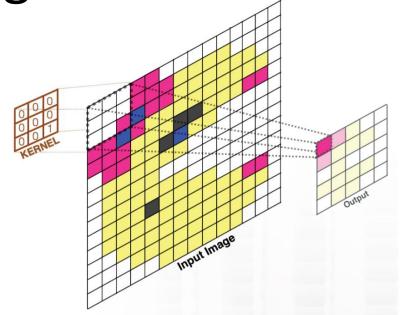
1.23

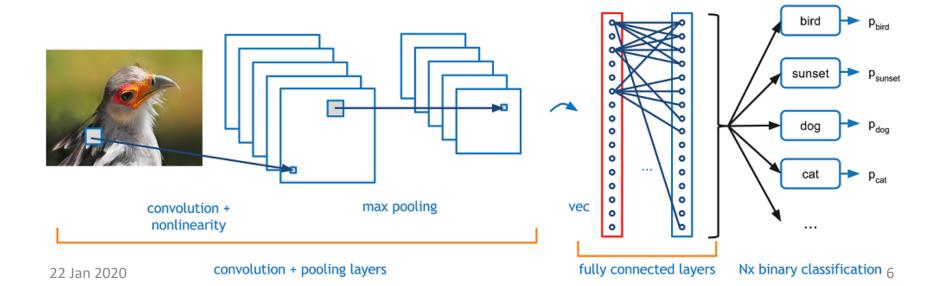
0.48

1.71

Image Recognition

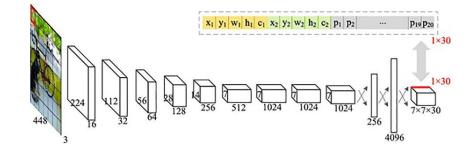
- Convolutional Neural Networks have become a standard method for encoding an image into a vector representation
- The most common use is to take this representation to classify the image
- Method is more general than that and representation can be seen as a compressed form of the original image

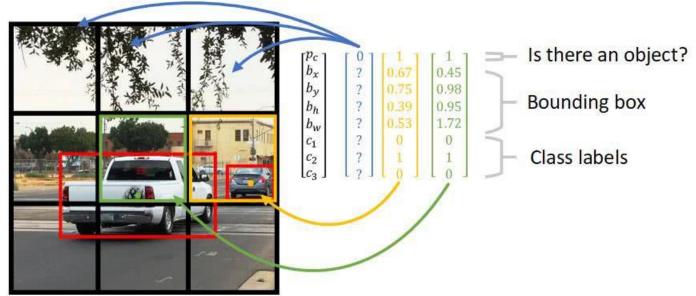




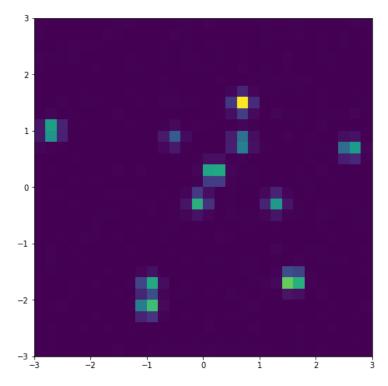
You Only Look Once (YOLO)

- Split the image in a GxG grid of regions
- For each region, predict an object class
- If region not "empty", also predict bounding box and classification score
- Bounding box: x, y, width, height
- Input: NxN image
- Output: GxGxF tensor of box predictions



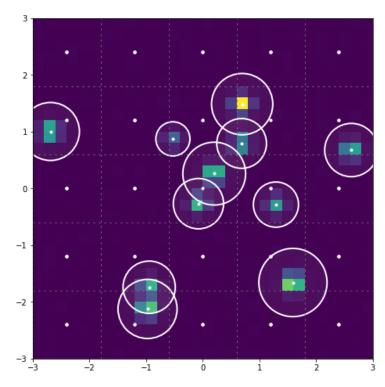


CaloYOLO



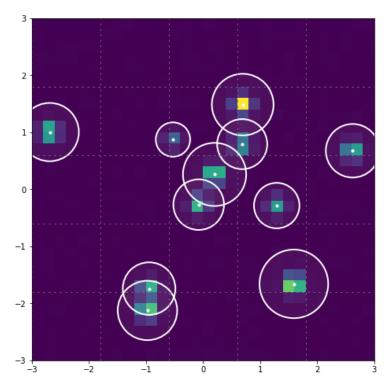
- Started with a simple toy dataset
- 30x30 pixel images
- Showers with Gaussian shape
- # of showers: Poisson w/ mean 5
- Position: Gaussian w/ mean 0 & stdv 1
- Energy: Gaussian w/ mean 6 & stdv 2
- Remove showers with E < 0.5

CaloYOLO



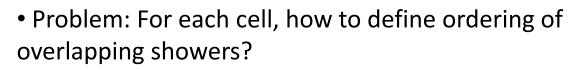
- Started with a simple toy dataset
- 30x30 pixel images
- Showers with Gaussian shape
- # of showers: Poisson w/ mean 5
- Position: Gaussian w/ mean 0 & stdv 1
- Energy: Gaussian w/ mean 6 & stdv 2
- Remove showers with E < 0.5
- Truth: GxGxOx3 tensor
 - G: # of grid cells per axis
 - O: Max # of showers per cell
 - For each shower: x, y, E is given
 - Missing showers have x,y,E = 0
- Example: 5x5x3x3

CaloYOLO

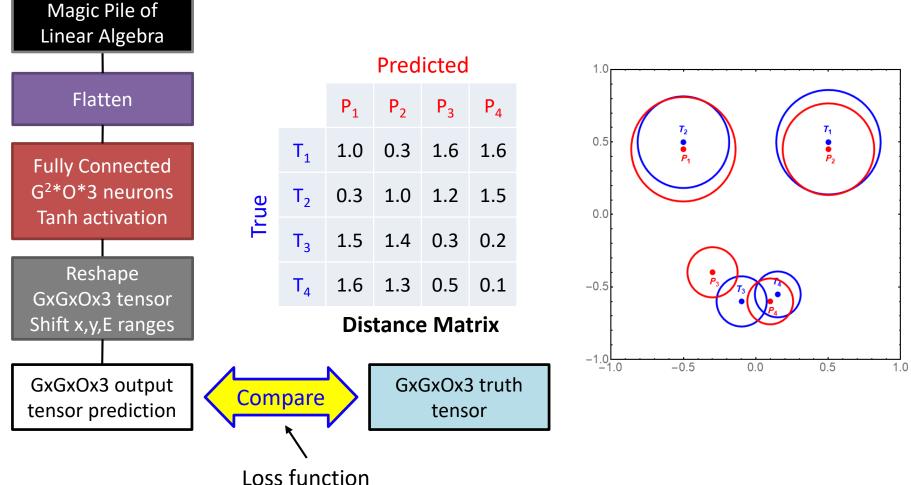


Ignore showers with E<0.5

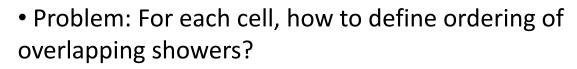
- Started with a simple toy dataset
- 30x30 pixel images
- Showers with Gaussian shape
- # of showers: Poisson w/ mean 5
- Position: Gaussian w/ mean 0 & stdv 1
- Energy: Gaussian w/ mean 6 & stdv 2
- Remove showers with E < 0.5
- Truth: GxGxOx3 tensor
 - G: # of grid cells per axis
 - O: Max # of showers per cell
 - For each shower: x, y, E is given
 - Missing showers have x,y,E = 0
- Example: 5x5x3x3



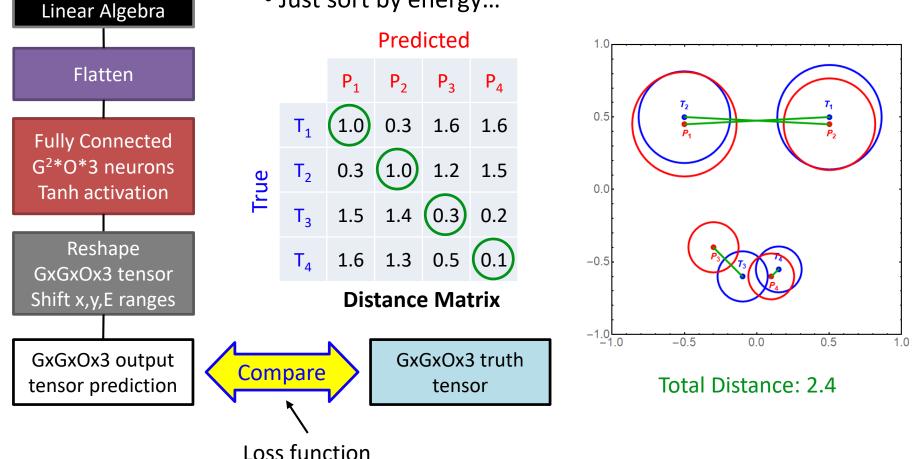
• Known as the Assignment Problem



30x30 input image

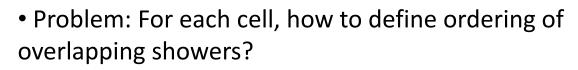


- Known as the Assignment Problem
- Just sort by energy...

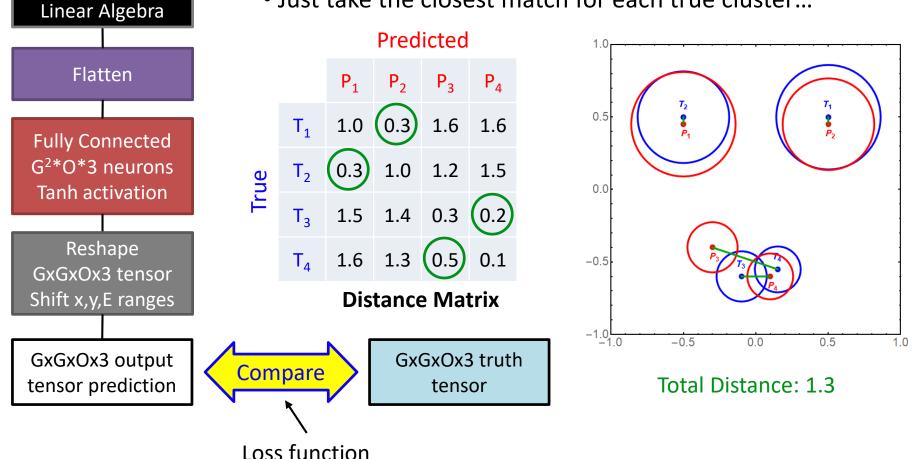


30x30 input image

Magic Pile of

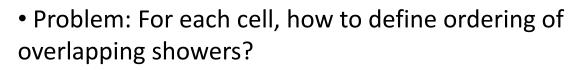


- Known as the Assignment Problem
- Just take the closest match for each true cluster...

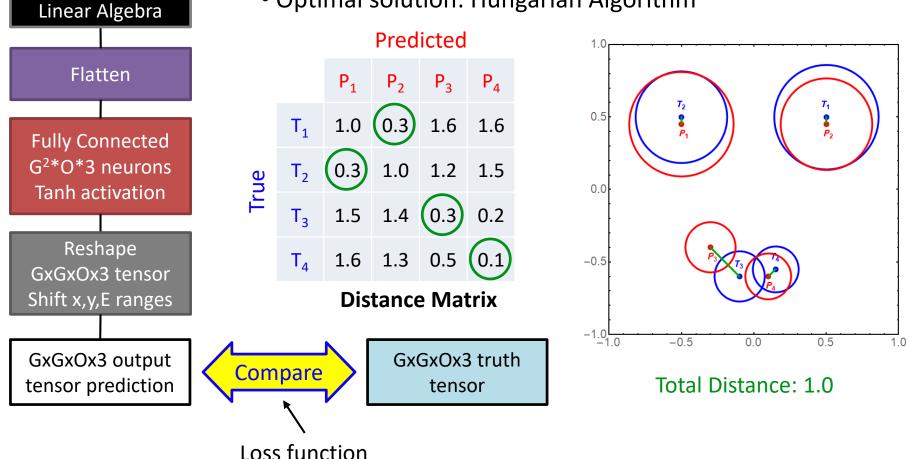


30x30 input image

Magic Pile of



- Known as the Assignment Problem
- Optimal solution: Hungarian Algorithm



30x30 input image

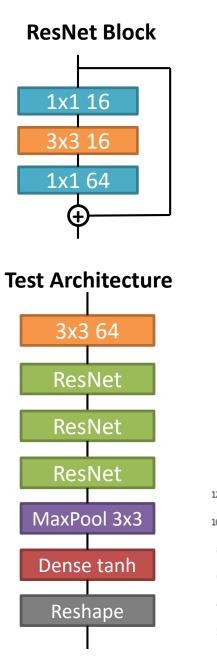
Magic Pile of

More Loss Function

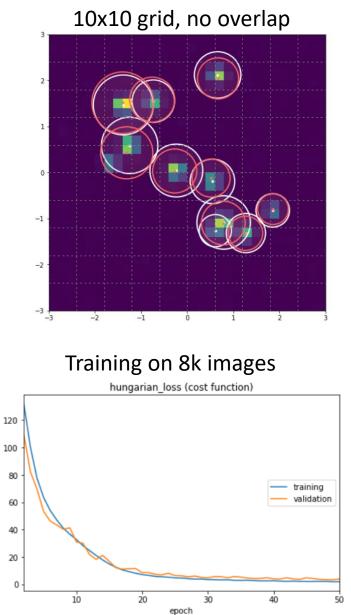
- What to do with "empty" tensor elements:
 - Both true and pred: Matched showers
 - Pred but no true: Ghost prediction
 - True but no pred: Missing prediction

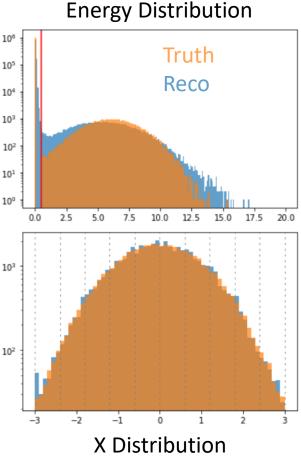
$$\begin{split} Loss \big(y_{pred}, y_{true} \big) &= \lambda_{match} < (y_{pred}^{match} - y_{true}^{match})^2 > + \\ \lambda_{miss} < (E_{pred}^{miss} - E_{true}^{miss})^2 > + \lambda_{ghost} < (E_{pred}^{ghost})^2 > + \\ \lambda_{all} \times < N_{ghost} > \times < N_{miss} > \times < (y_{pred} - y_{true})^2 > \end{split}$$

- λ 's are hyperparameters to be tuned
- Importance weighting for ghosts and misses
- Not clear whether last term is needed, but it may help in the beginning of training

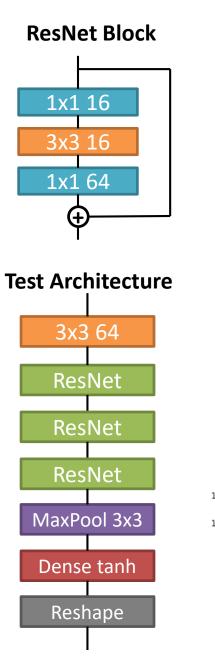


Some Results

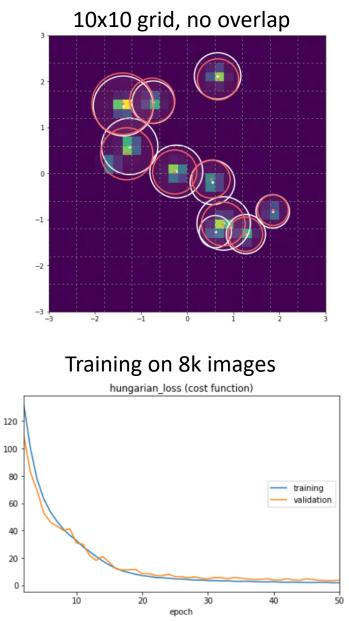




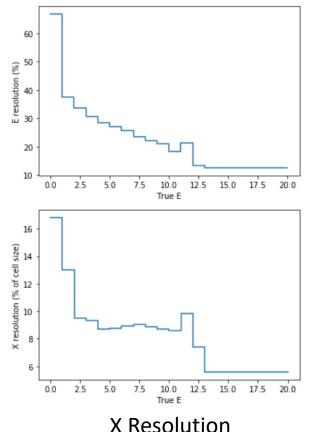
Averages 0.07 ghosts / image 0.06 missed / image



Some Results



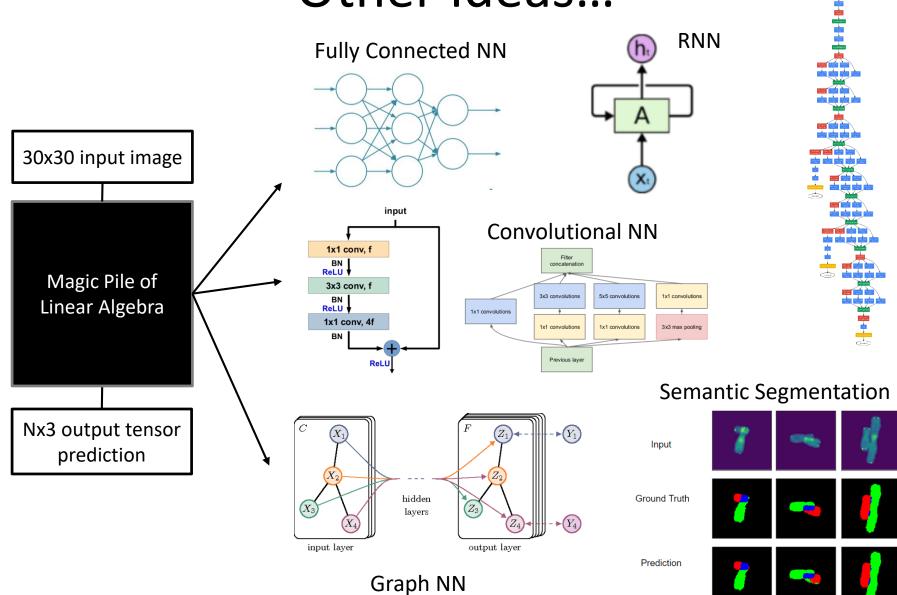
Energy Resolution



Averages 0.07 ghosts / image

0.06 missed / image

Other Ideas...

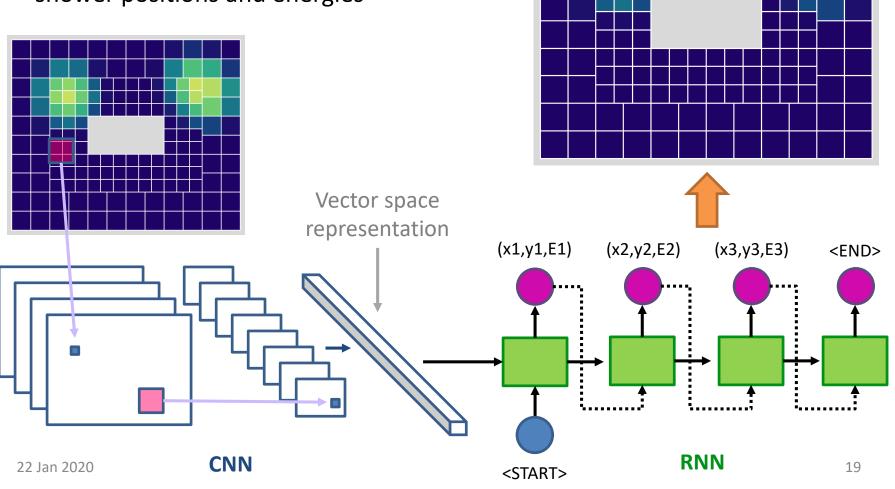


Going Deeper

Calo "Captioning"?

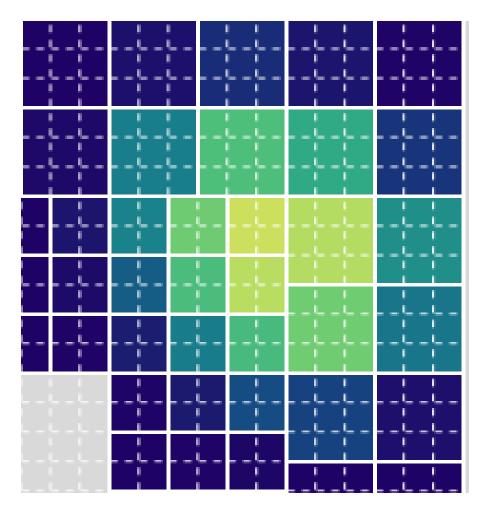
• Idea:

- Encode calo image into vector space
- Feed into RNN to output sequence of shower positions and energies



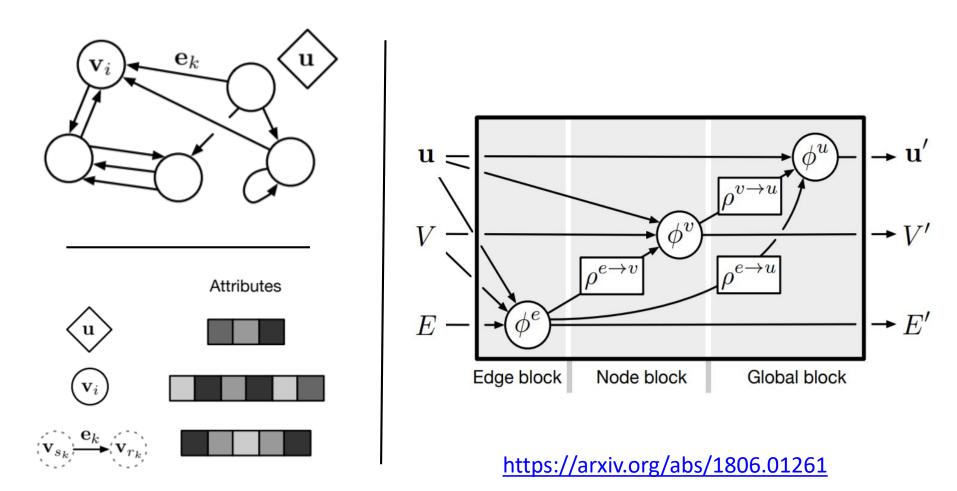
Irregular Geometry Issue

- Calo cells are not all identical
- Coarser granularity on outside cells
- Breaks translation invariance
- How do we apply a kernel in this scenario?
 - Downsampling:
 - Merge all cells in a module?
 - Clearly would degrade resolution
 - Upsampling:
 - Divide every cell into smaller
 2x2 cm² pixels
 - Predict charge in each pixel
 - Uniform distribution over cell?
 - Deep learned upsampling?



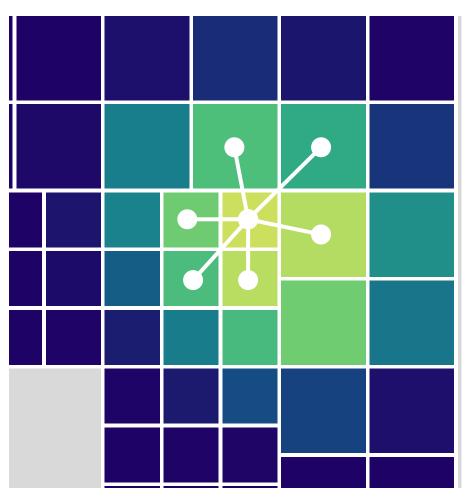
Graph Neural Networks?

• One alternative is to scrap the CNN approach and move into a GNN approach



Graph Neural Networks?

- One alternative is to scrap the CNN approach and move into a GNN approach
- Treat each cell as a node in a graph
- Edges connect cells to neighbors characterizing their distance
- Fully connected?
 - Global attributes could encode full graph as input to RNN
- Focus on local graphs?
 - Could be used for upsampling in combination with a CNN
- Many ideas to be explored
- Developing into a student project proposal with the Cambridge group



Summary

- We are exploring deep learning solutions to calorimetry
- Initial tests on easy task gives ok performance
- CNN architecture better than simple NN as expected
- On single GPU (Google Colab), runs at ~7kHz
- Many tests still possible on different datasets:
 - Increase noise
 - Increase pile-up
 - Change energy and position distributions
 - Irregular pixel size (LHCb-like)
- Eventually run this on actual LHCb MC
- Also looking to explore solutions other than CNN