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The LHCb Detector
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A Calorimeter Event
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Things can get busy!
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The Goal

• Our goal is to create a neural network architecture to process calorimeter 
images and output a set of clusters with position and energy information
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Image Recognition
• Convolutional Neural Networks have 
become a standard method for encoding 
an image into a vector representation

• The most common use is to take this 
representation to classify the image

• Method is more general than that and 
representation can be seen as a com-
pressed form of the original image
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You Only Look Once (YOLO)
• Split the image in a GxG grid of regions

• For each region, predict an object class

• If region not “empty”, also predict 
bounding box and classification score

• Bounding box: x, y, width, height

• Input: NxN image

• Output: GxGxF tensor of box predictions



22 Jan 2020 8

CaloYOLO

• Started with a simple toy dataset

• 30x30 pixel images

• Showers with Gaussian shape

• # of showers: Poisson w/ mean 5

• Position: Gaussian w/ mean 0 & stdv 1

• Energy: Gaussian w/ mean 6 & stdv 2

• Remove showers with E < 0.5
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CaloYOLO

• Started with a simple toy dataset

• 30x30 pixel images

• Showers with Gaussian shape

• # of showers: Poisson w/ mean 5

• Position: Gaussian w/ mean 0 & stdv 1

• Energy: Gaussian w/ mean 6 & stdv 2

• Remove showers with E < 0.5

• Truth: GxGxOx3 tensor

• G: # of grid cells per axis

• O: Max # of showers per cell

• For each shower: x, y, E is given

• Missing showers have x,y,E = 0

• Example: 5x5x3x3
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CaloYOLO

• Started with a simple toy dataset

• 30x30 pixel images

• Showers with Gaussian shape

• # of showers: Poisson w/ mean 5

• Position: Gaussian w/ mean 0 & stdv 1

• Energy: Gaussian w/ mean 6 & stdv 2

• Remove showers with E < 0.5

• Truth: GxGxOx3 tensor

• G: # of grid cells per axis

• O: Max # of showers per cell

• For each shower: x, y, E is given

• Missing showers have x,y,E = 0

• Example: 5x5x3x3

Ignore showers with E<0.5
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P1 P2 P3 P4

T1 1.0 0.3 1.6 1.6

T2 0.3 1.0 1.2 1.5

T3 1.5 1.4 0.3 0.2

T4 1.6 1.3 0.5 0.1

Predicted
Tr

u
e

Distance Matrix

Loss Function

GxGxOx3 truth 
tensor

Compare

Loss function

• Problem: For each cell, how to define ordering of 
overlapping showers?

• Known as the Assignment Problem

Flatten

Fully Connected
G2*O*3 neurons
Tanh activation

Reshape
GxGxOx3 tensor
Shift x,y,E ranges

Magic Pile of 
Linear Algebra

30x30 input image

GxGxOx3 output 
tensor prediction
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P1 P2 P3 P4

T1 1.0 0.3 1.6 1.6

T2 0.3 1.0 1.2 1.5

T3 1.5 1.4 0.3 0.2

T4 1.6 1.3 0.5 0.1

Predicted
Tr

u
e

Distance Matrix

Total Distance: 2.4

Loss Function

GxGxOx3 truth 
tensor

Compare

Loss function

• Problem: For each cell, how to define ordering of 
overlapping showers?

• Known as the Assignment Problem

• Just sort by energy…

Flatten

Fully Connected
G2*O*3 neurons
Tanh activation

Reshape
GxGxOx3 tensor
Shift x,y,E ranges

Magic Pile of 
Linear Algebra

30x30 input image

GxGxOx3 output 
tensor prediction
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P1 P2 P3 P4

T1 1.0 0.3 1.6 1.6

T2 0.3 1.0 1.2 1.5

T3 1.5 1.4 0.3 0.2

T4 1.6 1.3 0.5 0.1

Predicted
Tr

u
e

Distance Matrix

Total Distance: 1.3

Loss Function

GxGxOx3 truth 
tensor

Compare

Loss function

• Problem: For each cell, how to define ordering of 
overlapping showers?

• Known as the Assignment Problem

• Just take the closest match for each true cluster…

Flatten

Fully Connected
G2*O*3 neurons
Tanh activation

Reshape
GxGxOx3 tensor
Shift x,y,E ranges

Magic Pile of 
Linear Algebra

30x30 input image

GxGxOx3 output 
tensor prediction
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P1 P2 P3 P4

T1 1.0 0.3 1.6 1.6

T2 0.3 1.0 1.2 1.5

T3 1.5 1.4 0.3 0.2

T4 1.6 1.3 0.5 0.1

Predicted
Tr

u
e

Distance Matrix

Total Distance: 1.0

Loss Function

GxGxOx3 truth 
tensor

Compare

Loss function

• Problem: For each cell, how to define ordering of 
overlapping showers?

• Known as the Assignment Problem

• Optimal solution: Hungarian Algorithm

Flatten

Fully Connected
G2*O*3 neurons
Tanh activation

Reshape
GxGxOx3 tensor
Shift x,y,E ranges

Magic Pile of 
Linear Algebra

30x30 input image

GxGxOx3 output 
tensor prediction
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More Loss Function
• What to do with “empty” tensor elements:

• Both true and pred: Matched showers

• Pred but no true: Ghost prediction

• True but no pred: Missing prediction

𝐿𝑜𝑠𝑠 𝑦𝑝𝑟𝑒𝑑 , 𝑦𝑡𝑟𝑢𝑒 = 𝜆𝑚𝑎𝑡𝑐ℎ < (𝑦𝑝𝑟𝑒𝑑
𝑚𝑎𝑡𝑐ℎ − 𝑦𝑡𝑟𝑢𝑒

𝑚𝑎𝑡𝑐ℎ)2> +

𝜆𝑚𝑖𝑠𝑠 < (𝐸𝑝𝑟𝑒𝑑
𝑚𝑖𝑠𝑠 − 𝐸𝑡𝑟𝑢𝑒

𝑚𝑖𝑠𝑠)2> + 𝜆𝑔ℎ𝑜𝑠𝑡 < (𝐸𝑝𝑟𝑒𝑑
𝑔ℎ𝑜𝑠𝑡

)2> +

𝜆𝑎𝑙𝑙 ×< 𝑁𝑔ℎ𝑜𝑠𝑡>×< 𝑁𝑚𝑖𝑠𝑠>×< (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)
2>

• l’s are hyperparameters to be tuned

• Importance weighting for ghosts and misses

• Not clear whether last term is needed, but it 
may help in the beginning of training
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Some Results
1x1 16

1x1 64

3x3 16

+

ResNet Block

ResNet

ResNet

ResNet

3x3 64

MaxPool 3x3

Dense tanh

Reshape

Test Architecture

Averages
0.07 ghosts / image
0.06 missed / image

Truth
Reco

Energy Distribution

X Distribution

10x10 grid, no overlap

Training on 8k images
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Some Results
1x1 16

1x1 64

3x3 16

+

ResNet Block

ResNet

ResNet

ResNet

3x3 64

MaxPool 3x3

Dense tanh

Reshape

Test Architecture

Averages
0.07 ghosts / image
0.06 missed / image

Energy Resolution

X Resolution

10x10 grid, no overlap

Training on 8k images
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Other Ideas…

Magic Pile of 
Linear Algebra

30x30 input image

Nx3 output tensor 
prediction

Fully Connected NN

Convolutional NN

Graph NN

RNN

Going Deeper

Semantic Segmentation
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Calo “Captioning”?
• Idea:

• Encode calo image into vector space

• Feed into RNN to output sequence of 
shower positions and energies

<START>

(x1,y1,E1) <END>(x2,y2,E2) (x3,y3,E3)

Vector space
representation

RNNCNN
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Irregular Geometry Issue
• Calo cells are not all identical

• Coarser granularity on outside cells

• Breaks translation invariance

• How do we apply a kernel in this 
scenario?

• Downsampling:

• Merge all cells in a module?

• Clearly would degrade 
resolution

• Upsampling:

• Divide every cell into smaller 
2x2 cm2 pixels

• Predict charge in each pixel

• Uniform distribution over cell?

• Deep learned upsampling?
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Graph Neural Networks?
• One alternative is to scrap the CNN approach and move into a GNN approach

https://arxiv.org/abs/1806.01261

https://arxiv.org/abs/1806.01261
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Graph Neural Networks?
• One alternative is to scrap the CNN 
approach and move into a GNN approach

• Treat each cell as a node in a graph

• Edges connect cells to neighbors 
characterizing their distance

• Fully connected?

• Global attributes could encode full 
graph as input to RNN

• Focus on local graphs?

• Could be used for upsampling in 
combination with a CNN

• Many ideas to be explored

• Developing into a student project 
proposal with the Cambridge group
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Summary

• We are exploring deep learning solutions to calorimetry

• Initial tests on easy task gives ok performance

• CNN architecture better than simple NN as expected

• On single GPU (Google Colab), runs at ~7kHz

• Many tests still possible on different datasets:

• Increase noise

• Increase pile-up

• Change energy and position distributions

• Irregular pixel size (LHCb-like)

• Eventually run this on actual LHCb MC

• Also looking to explore solutions other than CNN


