

Paris Centre for Cosmological Physics

Deblending galaxies with variational autoencoders

Bastien Arcelin

Co-authors: Cyrille Doux, Cécile Roucelle, Eric Aubourg

Bastien Arcelin - 22/01/2020

- LSST : Legacy Survey of Space and Time (Vera Rubin Observatory)
- Being built north Chile
- First light in 2021
- 10 years of operation

2 IN2P3/IRFU - Machine Learning Workshop

Bastien Arcelin - 22/01/2020

LSST

- 8,4m mirror
- 3200 megapixel camera
- 20 terabytes of data per night
- 10 years of operation : around 60 petabytes of data

Need fast analysis methods —> Machine learning

LSST to probe dark energy

• SN la

- CMB
- BAO
- Clusters
- Weak lensing

Bastien Arcelin - 22/01/2020

Weak lensing

- Lensing due to mass: deforms the images of the galaxies
- Correlations between orientations and shapes of neighbour galaxies: cosmic shear

Bastien Arcelin - 22/01/2020

Weak lensing

Ellipticity :

$$\varepsilon = \epsilon^s + \gamma$$

$$\epsilon = \epsilon_1 + i\epsilon_2$$

Observed ellipticity = intrinsic ellipticity + shear

From Martin Kilbinger slides : http://www2.iap.fr/users/kilbinge/talks/marseille08.pdf

Bastien Arcelin - 22/01/2020

LSST data

- Will look a lot like
 HSC data
- HSC: 58% of the detected objects are identified as blended*
- Systematic in shear measurement

HSC image of small piece of COSMOS field (https://www.naoj.org/Topics/2017/02/27/index.html)

* Bosch et al. (2017)

Bastien Arcelin - 22/01/2020

Goals and motivation Which algorithm ? Which parameters ?

Bastien Arcelin - 22/01/2020

Variational AutoEncoder (VAE) (Kingma +2014)

http://blog.fastforwardlabs.com

9 IN2P3/IRFU - Machine Learning Workshop

Bastien Arcelin - 22/01/2020

Machine learning for deblending

Two neural networks:

- <u>VAE (Kingma+2014)</u>:
 - Learn a latent variable (z) generative model p(X|z)
 - Approximate the posterior p(z|X) with an encoder

• <u>Deblender</u>:

- Use fixed generative model from VAE
- Train a new network that learns to approximate p(Z_{center}|X_{blended})
- ~ Perform deblending in latent space

Machine learning for deblending

Architecture:

- β -VAE : $\beta = 10^{-2}$
- Prior on latent space: $\mathcal{N}(0,1)$
- 8 Convolutional layers in encoder and decoder

Training sample:

- Simulated data (artificial blends) from HST COSMOS catalog (81 500 galaxies)
- Data augmentation
- Normalized in [0,1]
- Batchsize = 100
- Training sample shape (batch_size, 64,64,X)

LSST+ Euclid data

Why using Euclid data:

- ✓ Adding infrared bands (x3) ✓ Adding a wide optical band
- ✓ Better resolution (no atmospheric PSF)

Bastien Arcelin - 22/01/2020

VAE results Few examples

Bastien Arcelin - 22/01/2020

VAE results Shear and magnitude reproduction

<u>LSST</u>

LSST + Euclid

Bastien Arcelin - 22/01/2020

VAE results Few examples

Bastien Arcelin - 22/01/2020

VAE results Shear and magnitude reproduction

<u>LSST</u>

LSST + Euclid

Bastien Arcelin - 22/01/2020

Deblend real images Transfer learning

Transfer learning:

- 80% of simulated data
- 20% of real data

Difficult to have a clean sample:

- Clear blends
- Residual of image processing
- Correlated noise in real images

Bastien Arcelin - 22/01/2020

Conclusion

• <u>VAE</u>: Learn accurately features of galaxies

- <u>Deblender</u>: Recover the distribution of latent variables encoding target galaxy
- <u>Combining ground and space data:</u> Significant improvement in shape reconstruction

• <u>Real images:</u>

First test with transfer learning. Difficulty to have a clean sample of individual galaxy images.

Paper under collaboration review Arcelin et al. (2020). Deblending galaxies with variational Autoencoder: a joint multi-bands, multi-instruments Bayesian approach.

• <u>Next step:</u>

Using Bayesian neural networks (TensorFlow Probability) to output ellipticities and redshift distribution from images.

Bastien Arcelin - 22/01/2020

Additional slides

Bastien Arcelin - 22/01/2020

VAE results Shear and magnitude reproduction

Bastien Arcelin - 22/01/2020

VAE results Shear and magnitude reproduction

Bastien Arcelin - 22/01/2020