

ML developements for the WZ leptonic analyses in ATLAS

IN2P3/IRFU Machine Learning Workshop - 22-23 of January 2020

L. Portales Supervision : F. Costanza, I.Koletsou, E.Sauvan

- These slides will to illustrate some of the problematics we are dealing with, and the ML methods we're testing to handle them
- This is all work in progress, and any suggestions or advice is extremely welcome

Content overview

- Analysis overview
- DNN for neutrino reconstruction
- Alternatives to BDTs for signal discrimination
 - > 'Simple' (high-level) DNN
 - > 'Particle-based' (lower-level) DNN
 - > ANN for systematics reduction

Analysis overview

WZjj-EW is one of the rarest final-states accessible at the LHC

- Among rare processes including quartic boson coupling
- Indirect probe of Higgs properties (through V_LV_L scattering)
- Looking for $3 e/\mu$, 1v + 2 jets
 - > Jet kinematics is the main identification mean of the process
 - > Makes the analysis sensitive to Jet calibration systematics
- Very large irreducible background
 - > WZjj-QCD ~ 2-4 times larger than WZjj-EW in measurement phase space

 > Tipically not extremely well modelled (also true for signal)

Neutrino longitudinal component

• No way to measure it directly

> Problematic for boson polarisation measurements, very sensitive to boson decay caracteristics

• Usual evaluation methods :

> Assuming $M_W = M_{pole}$: $A p_{z,v}^2 + B p_{z,v} + C = 0$

$$A = p_{T, lep}^{2}$$

$$B = -2 p_{z, lep} \left(p_{x, lep} p_{x, v} + p_{y, lep} p_{y, v} + \frac{M_{w}}{2} \right)$$

$$C = -\left(p_{x, lep} p_{x, v} + p_{y, lep} p_{y, v} + \frac{M_{w}}{2} \right)^{2} + E_{lep}^{2} p_{T, v}^{2}$$

> Second order equation \rightarrow 2 solutions in most cases (& can be complex)

Several methods tested to deal with the ambiguity

• NN seem well suited for this problem

- > Trained a network for regression
- > Aim : evaluate $p_{z,v}$ (+ correct $p_{x,v}$, $p_{y,v}$) avoiding degeneracy from analytical method
- > **Inputs** : W lepton 4-momentum, $p_{x,v}$, $p_{y,v}$, $p_{z,v}$ (analytical)
- > **Outputs** : neutrino 4-momentum + M_W

- Keras + Tensorflow
- 8 hidden layers
- 512 nodes per layer
- LeakyReLU , 0.1 leakage
- Dropout : 0.1
- Adam optimiser, variable learning rate (0.001->0.0001->0.00001)
- Training/validation samples yields : > 70k/20k events
- Split in 2048 event batches
- Trained over 300 epochs (with early stopping)
- > Loss function defined to account for both $\ensuremath{\mathsf{M}_{\mathsf{W}}}$ and neutrino 4-momentum resolutions:


```
L = k_0 MSE(p_{x,v}) + k_1 MSE(p_{y,v}) + k_2 MSE(p_{z,v}) + k_3 MSE(\hat{M}_w) + k_4 \langle \frac{M_W^{truth} - M_W^{pred.}}{M_W^{truth}} \rangle
```


• Some slight improvement w.r.t. analytical method

> Small bias in M_W peak position would require some fine tuning

• Some degradation in the resolution of other variables of interest

> Especially $\cos \theta_W^{\star}$, the kinematic variable most sensitive to boson polarisation state

- > Main measurement of WZ inclusive analysis, and of great interest for future VBS studies
- > Plan to include it in network optimisation instead of(/with) M_W

NN for background rejection

- Previous analysis used a BDT to enhance sensitivity to signal
 - > 15 kinematic variables selected after thorough optimisation
 - > Allowed first observation of electroweak WZjj production with 2015+16 data
 - > Retrained for full Run 2 analysis, and compared to alternative discriminants

- Different NN compared, with different type of inputs
 - > Same input set as BDT : 'base DNN'
 - > BDT inputs + added high-level : 'new inputs, DNN'
 - > Lower-level inputs (2 jets + 4 leptons 4-momentums) : 'pNN'
 - > Lower-level + selected high-level inputs (not built from 4-momentum): 'pNN+X'
- 3 network structures to accomodate input type :

- Slight improvement over BDT when adding inputs
- Similar improvement with either high- or low-level inputs added

• Alternatively, Adversarial network has been tested :

> Aim is getting a classifier decorrelated from m_{ii}

> Motivation :

• m_{ii} shape largely impacted by both object and theory/modelling uncertainties

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj-QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.7

- > ANN structures (in brief):
 - Classifier is the same as the 'high-level' DNN
 - Adversarial build with same structure, but without softmax output node
 - Adversarial tries to guess mJJ from the classifier output instead

• Does its job rather well, but causes a large performance loss

- Discriminant is meant to be used as a fit template
 - > Benchmarking can be performed directly in that context
 - > MC-only fit performed, using an artificially generated ('Asimov') dataset
 - > Fit parameter of interest : Signal yield in the signal region (SR)
 - > ML templates used in this SR
 - > Comparison performed looking both at the stat-only sensitivity & with added systematics
 - > Systematics included :
 - Modelling : Difference between MC generators for signal & main background (WZjj-QCD)
 - QCD scale : flat +30 %/-20 % uncertainty band on WZjj-QCD

- Fit results consistent with expectations
 - > Slight performance improvement from DNN
 - **Caveat :** since it uses more features, DNN could be more sensitive to object systematics (this couldn't be tested for now)
 - > Much worse performances with ANN
 - Interesting ANN quirk : No impact of systematics on significance, i.e. seems less sensitive to background modelling uncertainties
 - Caveat : main (expected) source of improvement not tested yet
 - > ANN could remove the effects of transfer factors and uncertainties from background control region to SR (split with respect to mJJ)

	Work In	BDT		DNN		ANN	
	Progress	Stat.	Stat.+Sys.	Stat.	Stat.+Sys.	Stat.	Stat+Sys.
Signal Strength		1±0.086	1±0.203	1±0.083	1±0.196	1±0.098	1±0.218
Systematics impact			0.184		0.178		0.195
Significance		7.9 σ	7.8 σ	8.2 σ	8.0 σ	6.0 σ	6.0 σ
ROC AUC		0.791		0.796		0.756	

- Various ML methods have been tested for the WZ analyses
 - > DNN for neutrino reconstruction
 - > DNN/ANN for WZjj electroweak signal extraction
- Some small improvements observed in most cases

> Slightly improved signal sensitivity compared to previous methods, but not game changing

- More in depth performances evaluation might be needed to confirm it
- These are still promising, as they could be enhanced with some clever optimisation, which might still be lacking.
- Any suggestion is welcome !

