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Direct Searches for New Physics

B. Nachman, D. Shih, arxiv:2001.04990

→ [1-5]

→ [6-15]

Model 
independent

https://arxiv.org/abs/2001.04990
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Bump hunt use-case

Supervised (labels) 

DNN, BDT, SVM

Semi-supervised 

(some labels)

triplet NN,...

Unsupervised 

(no labels) 

SVM-1class, AE, VAE, 
WAE, GAN-AE,... 

Search for resonance in a spectrum using ML



Julien Donini 4

Outline

Direct search for New Physics at the LHC using Autoencoders

Two use-cases with dijet simulated samples

● LHC Olympics challenge → AE (jet substructure variables)

● Simulated dijet data → GAN-AE (Event variables)

Conclusion and outlook
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Why Autoencoders ?

An Autoencoder is a network trained to copy it input to its output  

Reproducing the identity is not useful

→ Restricted to copy imperfectly: 
forces the AE to prioritize information 
to learn useful features

Undercomplete or regularized AE

Encoder Decoder

Usage: dimensionality reduction, representation learning, manifold learning, 
generative network, anomaly detection, ...  
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Autoencoders

Train AE on background samples: reconstructed error

The idea being that the network will learn to main background features 
and fail to reconstruct anomalous sample → larger reconstruction error

Input Output
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LHC Olympic challenge

Anomaly detection challenge for ML4Jets2020 conference (15-17/01/20)

● Simulated Background (dijet data) + Signal

● Benchmark samples to develop method

● Three LHCO 2020 Black Boxes “data” with unknown signal

● Datasets

● Event selection: >=1 anti-kT R = 1.0 jet, |η| < 2.5 and pT > 1.2 TeV.  

● Data consists of [pt,eta,phi] for of up to 700 hadrons

● What was asked

● p-value of dataset (for null hypothesis)

● As complete as possible description of NP process

● Number of signal events in the data (with uncertainties

● Challenge ran until Jan 12th, 10 team submitted their results

https://indico.cern.ch/event/809820/page/19002-lhcolympics2020
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High level features

Pre-processing was necessary to extract jet features from raw data

I. Dinu

https://gitlab.cern.ch/idinu/lhc-olympics-preprocessing
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High level features

Correlation Importance 

(ranked with Gradient BDT) 

I. Dinu

https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
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HLF-AE: High Level Feature AE
I. Dinu

→ gitlab link to code

https://gitlab.cern.ch/idinu/dl1-hyperparameter-optimisation
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Hyper Parameter Optimization
I. Dinu
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Hyper Parameter Optimization
I. Dinu
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Results
I. Dinu

A threshold value is applied and feature distributions are compared.

Mean square error returned by AE

→ training dataset (background) and black box samples 1-3:
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Results on Bbox-1 dataset
I. DinuInvariant mass distribution after threshold on MSE error:

Train BG dataset

Black box 1 data

Signal ?

Possible signal around 5.2 TeV ?
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Challenge (sad) truth

LHC Olympics outcome: these slides

Black box 1 signal
Z’->XY; X,Y->qq

mZ’ = 3823 GeV, mX = 732 GeV, mY = 378 GeV

Signal: 834 events

Team results: fitted mass

← us

https://indico.cern.ch/event/809820/contributions/3708303/attachments/1971116/3278976/go
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Challenge (sad) truth

LHC Olympics outcome: these slides

Black box 1 signal
Z’->XY; X,Y->qq

mZ’ = 3823 GeV, mX = 732 GeV, mY = 378 GeV

Signal: 834 events

Team results: number of events

← us

→ Our approach finds something but clearly biased ...

https://indico.cern.ch/event/809820/contributions/3708303/attachments/1971116/3278976/go
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 Simulated samples: dijet events

Dijet events (Madgraph+Pythia+Delphes):

- Background: 500k QCD dijets (H
T
 > 400 GeV )

- Signal: 500k RPV-MSSM stop (615 GeV, 1 TeV)

10 input variables (selected using supervised BDT ranking)
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GAN-AE architecture

→ Discriminant objective : learn AE’s weaknesses

→ AE objective : correct these weaknesses

L. Vaslin

Network architecture
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GAN-AE architecture
L. Vaslin

Dropout rate: up to 20% or 40% depending on the layer

10 10
10
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Training

Training of discriminant

Loss function: binary cross-entropy

L. Vaslin
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Training

Training of AE

Loss function: binary cross-entropy + ε x mean distance [ε=2%]

L. Vaslin
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Training

Training cycle: 10 epochs on D, 4 epochs on AE (asymmetric training)

Stopping criterion: evaluation of AE performance (validation sample)

FOM = Mean distance + (1- mean D output)
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Testing

Application: only the AE is used on test events

Trained AE is applied on both background and signal test samples

L. Vaslin
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Preliminary results

Double peaks in distance calculation: to be understood

AUC ~ 0.7 for both signal masses

Mean Euclidean distance ROC Curve

L. Vaslin
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Comparison with standalone AE

GAN-AE performs better for low mass signal (most difficult)
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Issues with unstability

Results (AUC) show high variance: here for 60 GAN-AE (signal m=615 GeV)  

L. Vaslin
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Conclusion and Outlook

AE seem a good idea for unsupervised searches

However simple use case are not conclusive
● Appearance of spurious signal ? (LHC Olympics dataset)
● Instabilities (dijet sample)

More work needed on NN architectures (GAN-AE could be promizing)

Try to generalize to more complex signatures
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Model independent methods
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backup
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GAN-AE
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GAN-AE
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GAN-AE
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