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MACHINE LEARNING FOR CLAS12 DATA ANALYSIS WITH
GENERALIZED ADDITIVE MODELS



| 2Nom événement | Nom Prénom

• Physics objective: tomography of the nucleon through Generalized

Parton Distributions (GPDs)

→ Correlation between longitudinal momentum and transverse position of the 

partons in the nucleon

INTRODUCTION
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• Accessed through exclusive

inelastic processes including

Deeply Virtual Compton

Scattering (DVCS)
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• Jefferson Lab: 10.6 GeV electron beam

• CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (𝑒𝑝 → 𝑒𝑝γ)

Machine learning approach to be compared to classical approach

INTRODUCTION
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

! The lack of interpretability is controversial

• Interpretability: it is defined as the ability to explain or to provide the 

meaning in understandable terms to a human

• Transparency: a model is considered to be transparent if by itself it is 

understandable. A model can feature different degrees of 

understandability

• Intelligibility (or understandability) denotes the characteristic of a model 

to make a human understand its function – how the model works –

without any need for explaining its internal structure or the algorithmic 

means by which the model processes data internally

Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible

AI." Information Fusion (2019).
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

𝑝𝑧
𝑒

≥ 4 < 4

≤ 3 > 3 
𝐷𝑉𝐶𝑆

π0 𝐷𝑉𝐶𝑆

𝑝𝑧
γ1

Decision trees

(inv_masss_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv_masss_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8)
(energy_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone_angle_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
(energy_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65)
(energy_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)
(MM_eg1 in [1.298545, 1.304201, inf, inf]) and (energy_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)
(energy_g1 in [3.333313, 3.333823, inf, inf]) and (MM_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82)
(energy_g1 in [3.100909, 3.101237, inf, inf]) and (MM_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
(MM_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)
(cone_angle_g1 in [16.137178, 21.604087, inf, inf]) and (MM_epg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)

Rule bases

Models for which post-hoc analysis

is not needed



| 6IN2P3/IRFU workshop | Noëlie Cherrier

INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

𝑝𝑧
𝑒

≥ 4 < 4

≤ 3 > 3 
𝐷𝑉𝐶𝑆

π0 𝐷𝑉𝐶𝑆

𝑝𝑧
γ1

Decision trees

(inv_masss_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv_masss_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8)
(energy_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone_angle_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
(energy_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65)
(energy_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)
(MM_eg1 in [1.298545, 1.304201, inf, inf]) and (energy_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)
(energy_g1 in [3.333313, 3.333823, inf, inf]) and (MM_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82)
(energy_g1 in [3.100909, 3.101237, inf, inf]) and (MM_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
(MM_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)
(cone_angle_g1 in [16.137178, 21.604087, inf, inf]) and (MM_epg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)

Rule bases

Generalized Additive Models

(GAM)

𝑔 𝐸 𝑌 = β0 + 𝑓1 𝑥1 + 𝑓2 𝑥2 +

𝑓3 𝑥3 + … + 𝑓𝑚(𝑥𝑚)

+

+ +  ...

Models for which post-hoc analysis

is not needed
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Generalized Linear Models (GLM) :

𝑔 ො𝑦 = β0 + β1𝑥1 + …+ β𝑑𝑥𝑑

𝑔 ො𝑦 = ො𝑦 for regression, 𝑔 ො𝑦 = ln(
ො𝑦

1− ො𝑦
) for classification

GENERALIZED ADDITIVE MODELS (GAM)

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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) for classification
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𝑔 ො𝑦 = β0 + 𝑓1(𝑥1) + …+ 𝑓𝑑(𝑥𝑑)

Generalized Additive Models with pairwise interactions (GA2M) :

𝑔 ො𝑦 = β0 +𝑓𝑖(𝑥𝑖) + 𝑓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)

𝑔 ො𝑦 = -8,42 + + + ...  

GENERALIZED ADDITIVE MODELS (GAM)

𝑓1(𝑥1)

𝑓2,3(𝑥2, 𝑥3)

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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1. Feature construction

→ Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates

IN2P3/IRFU workshop | Noëlie Cherrier

HOW TO USE PHYSICS KNOWLEDGE?

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

𝑝𝑇
γ1

Feature candidate example

→Nodes are mathematical operators

→Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for 

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
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𝑒

𝑝𝑇
𝑝

θγ1
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1. Feature construction

→ Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates

HOW TO USE PHYSICS KNOWLEDGE?

Evaluation function?
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

FEATURE CONSTRUCTION IN GA2M
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

FEATURE CONSTRUCTION IN GA2M
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Compute β0 = ln
𝑝0

1−𝑝0
to form the 1st model 𝑔(ො𝑦) = β0. 

The residual is 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

FEATURE CONSTRUCTION IN GA2M
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FEATURE CONSTRUCTION IN GA2M
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FEATURE CONSTRUCTION IN GA2M
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Compute β0 = ln
𝑝0

1−𝑝0
to form the 1st model 𝑔(ො𝑦) = β0. 

The residual is 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 or a pair of features 𝑥1, 𝑥2 discriminative wrt the residual

(see next slide)

3) Fit a shape function 𝑓1 𝑥1 (or 𝑓1,2 𝑥1, 𝑥2 ) to the residual

4) Compute the new model: 𝑔 ො𝑦 = 𝑔 ො𝑦 + 𝑓1 𝑥1 (or 𝑔 ො𝑦 + 𝑓1,2 𝑥1, 𝑥2 ) and the 

new residual 𝑟 = 𝑦 − ො𝑦, and go back to step 2

FEATURE CONSTRUCTION IN GA2M
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Fitness function for the Genetic Programming algorithm:

FEATURE CONSTRUCTION IN GA2M

Single feature case Feature pair case

Shallow tree (maximum 4 leaves)

Feature fitness: RMS error of the 

inducted tree with the residual 𝑦 − ො𝑦

FAST algorithm, the target being the 

residual 𝑦 − ො𝑦

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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RESULTS

Baselines:

Neural network 0.7012 ± 0,0062

Linear SVM 0.6911

C4.5 with feature construction 0.7266 ± 0,0086 
(15 nodes using feature

construction)

AdaBoost with feature construction 0.7280 ± 0.0063
(50 trees of 1 node each with

feature construction)

Gradient Boosting with feature construction 0.7446 ± 0.0071
(100 trees of 7 nodes each with

feature construction)
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RESULTS

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1 𝑎𝑛𝑔𝑙𝑒 𝑝γ2 , 𝑝γ1 + 𝑝γ2

+ +    ...

Example of a model (the lower the 𝑦 value, the higher the probability to have a 

DVCS event):
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1. Feature construction

2. Using assumption on variable distributions to guide GAM/GA2M fitting

HOW TO USE PHYSICS KNOWLEDGE?
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1. Feature construction

2. Using assumption on variable distributions to guide GAM/GA2M fitting

HOW TO USE PHYSICS KNOWLEDGE?

Some works use the a priori monotonicity of the input variables w.r.t. the target
Kotłowski, W., & Słowiński, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.

Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.
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HOW TO USE PHYSICS KNOWLEDGE?

Some works use the a priori monotonicity of the input variables w.r.t. the target
Kotłowski, W., & Słowiński, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.

Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.

Monotonicity in physics?

𝑎𝑛𝑔𝑙𝑒 𝑝γ1 , 𝑝γ1 + 𝑝γ2

𝑝𝑒 + 𝑝γ1 − 10,6 − 𝑀𝑝
2
− 𝑝𝑒 + 𝑝γ1 2

Missing mass 𝑒𝑝 → 𝑒γ

Angle between hypothetical π0 and 

photon
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𝑎𝑛𝑔𝑙𝑒 𝑝γ1 , 𝑝γ1 + 𝑝γ2

𝑝𝑒 + 𝑝γ1 − 10,6 − 𝑀𝑝
2
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Missing mass 𝑒𝑝 → 𝑒γ

Angle between hypothetical π0 and 
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Bitonicity
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BITONICITY

Bitonicity: either monotonic, or 

increasing then decreasing, or 

decreasing then increasing

(i.e. unimodal)

Bitonicity criteria: 

difference between the 

function and its cumulative 

maximum/minimum
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Penalization: 

• in feature construction: fitness = 𝑠 − λ𝑏

• in shape functions with regularization in spline fitting
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RESULTS

𝑎𝑛𝑔𝑙𝑒 𝑝γ2 , 𝑝γ1 + 𝑝γ2

Accuracy Bitonicity score (penalty)

Without bitonicity constraint 0.738 ± 0.008 0.041 ± 0.048

With bitonicity constraint 0.735 ± 0.006 0.025 ± 0.046
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RESULTS

Accuracy Bitonicity score (penalty)

Without bitonicity constraint 0.738 ± 0.008 0.041 ± 0.048

With bitonicity constraint 0.735 ± 0.006 0.025 ± 0.046

Bitonicity penalties distributions:
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• GAM and GA2M: intelligible models, not perfectly transparent but more 

flexible than a rule base

• Gives good results on CLAS12 data particularly when exploiting feature

construction

• Prior knowledge to include: bitonicity of the most discriminative 

variables

• Using this prior knowledge leads to simpler models that remain efficient

→ Enforcing bitonicity is equivalent to increasing the regularization parameter

→ The model is more understandable when it matches prior knowledge on the 

input variables

CONCLUSION
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flexible than a rule base

• Gives good results on CLAS12 data particularly when exploiting feature

construction

• Prior knowledge to include: bitonicity of the most discriminative 

variables

• Using this prior knowledge leads to simpler models that remain efficient

→ Enforcing bitonicity is equivalent to increasing the regularization parameter

→ The model is more understandable when it matches prior knowledge on the 

input variables

CONCLUSION

Thank you for listening!
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