

# MACHINE LEARNING FOR CLAS12 DATA ANALYSIS WITH GENERALIZED ADDITIVE MODELS

IN2P3/IRFU workshop | Noëlie Cherrier



# INTRODUCTION

- Physics objective: tomography of the nucleon through Generalized Parton Distributions (GPDs)
  - → Correlation between longitudinal momentum and transverse position of the partons in the nucleon





 Accessed through exclusive inelastic processes including Deeply Virtual Compton Scattering (DVCS)

# INTRODUCTION

- Jefferson Lab: 10.6 GeV electron beam
- CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events  $(ep \rightarrow ep\gamma)$ Machine learning approach to be compared to classical approach



#### INTERPRETABLE / TRANSPARENT / INTELLIGIBLE MACHINE LEARNING

- Interpretability: it is defined as the ability to explain or to provide the meaning in understandable terms to a human
- **Transparency**: a model is considered to be transparent if by itself it is understandable. A model can feature different degrees of understandability
- Intelligibility (or understandability) denotes the characteristic of a model to make a human understand its function – how the model works – without any need for explaining its internal structure or the algorithmic means by which the model processes data internally



Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI." *Information Fusion* (2019).



4

#### INTERPRETABLE / TRANSPARENT / INTELLIGIBLE MACHINE LEARNING

Models for which post-hoc analysis is not needed



Decision trees

#### Rule bases

(inv\_masss\_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv\_masss\_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8) (energy\_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone\_angle\_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76) (energy\_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM\_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65) (energy\_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM\_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61) (MM\_eg1 in [1.298545, 1.304201, inf, inf]) and (energy\_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66) (energy\_g1 in [3.333313, 3.333823, inf, inf]) and (MM\_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82) (energy\_g1 in [3.100909, 3.101237, inf, inf]) and (MM\_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8) (MM\_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy\_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76) (cone\_angle\_g1 in [16.137178, 21.604087, inf, inf]) and (MM\_eg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)

IN2P3/IRFU workshop | Noëlie Cherrier

list

5

## INTERPRETABLE / TRANSPARENT / INTELLIGIBLE MACHINE LEARNING

Models for which post-hoc analysis is not needed



Decision trees

GAM (ambde=0.6), pr\_\_0 GAM (a

# $g(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + f_3(x_3) + \dots + f_m(x_m)$

#### <u>Generalized Additive Models</u> (GAM)

list

#### Rule bases

(inv\_masss\_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv\_masss\_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8) (energy\_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone\_angle\_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76) (energy\_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM\_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65) (energy\_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM\_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61) (MM\_eg1 in [1.298545, 1.304201, inf, inf]) and (energy\_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66) (energy\_g1 in [3.333313, 3.333823, inf, inf]) and (MM\_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82) (energy\_g1 in [3.100909, 3.101237, inf, inf]) and (MM\_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8) (MM\_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy\_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76) (cone\_angle\_g1 in [16.137178, 21.604087, inf, inf]) and (MM\_eg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)

IN2P3/IRFU workshop | Noëlie Cherrier | 6

Generalized Linear Models (GLM) :

 $g(\hat{y}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$  $g(\hat{y}) = \hat{y} \text{ for regression, } g(\hat{y}) = \ln(\frac{\hat{y}}{1-\hat{y}}) \text{ for classification}$ 

Hastie, T. J. (1986). Generalized additive models. In *Statistical models in S* (pp. 249-307). Routledge. Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. *ACM SIGKDD 2013*.



IN2P3/IRFU workshop | Noëlie Cherrier | 7

Generalized Linear Models (GLM) :

 $g(\hat{y}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$  $g(\hat{y}) = \hat{y} \text{ for regression, } g(\hat{y}) = \ln(\frac{\hat{y}}{1-\hat{y}}) \text{ for classification}$ 

Generalized Additive Models (GAM) :

 $g(\hat{y}) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$ 



Generalized Linear Models (GLM) :

 $g(\hat{y}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$  $g(\hat{y}) = \hat{y} \text{ for regression, } g(\hat{y}) = \ln(\frac{\hat{y}}{1-\hat{y}}) \text{ for classification}$ 

Generalized Additive Models (GAM) :

$$g(\hat{y}) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$$

Generalized Additive Models with pairwise interactions (GA2M) :

$$g(\hat{y}) = \beta_0 + \sum f_i(x_i) + \sum f_{i,j}(x_i, x_j)$$

Hastie, T. J. (1986). Generalized additive models. In *Statistical models in S* (pp. 249-307). Routledge. Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. *ACM SIGKDD 2013.* 



Generalized Linear Models (GLM) :

 $g(\hat{y}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$  $g(\hat{y}) = \hat{y} \text{ for regression, } g(\hat{y}) = \ln(\frac{\hat{y}}{1-\hat{y}}) \text{ for classification}$ 

Generalized Additive Models (GAM) :

$$g(\hat{y}) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$$

Generalized Additive Models with pairwise interactions (GA2M) :



Hastie, T. J. (1986). Generalized additive models. In *Statistical models in S* (pp. 249-307). Routledge. Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. *ACM SIGKDD 2013*. IN2P3/IRFU workshop | Noëlie Cherrier | 10



- 1. Feature construction
  - → Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates



Feature candidate example  $\rightarrow$  Nodes are mathematical operators  $\rightarrow$  Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.



- 1. Feature construction
  - → Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates



Feature candidate example  $\rightarrow$  Nodes are mathematical operators  $\rightarrow$  Leaves are base variables

 $\rightarrow$  Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.



## 1. Feature construction

→ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level





- 1. Feature construction
  - → Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level



# 1. Feature construction

→ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level





<u>Idea</u>: build one feature at a time, associated with one term of the GAM  $\rightarrow$  gradient boosting



IN2P3/IRFU workshop | Noëlie Cherrier | 16

<u>Idea</u>: build one feature at a time, associated with one term of the GAM  $\rightarrow$  gradient boosting



Idea: build one feature at a time, associated with one term of the GAM  $\rightarrow$  gradient boosting

<u>Objective function</u>: minimize the cross entropy  $-y \ln(\hat{y}) - (1-y) \ln(1-\hat{y})$ 

1) Compute  $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$  to form the 1st model  $g(\hat{y}) = \beta_0$ . The residual is  $r = y - \hat{y} = y - p_0$  ( $p_0$  proportion of the majority class)



<u>Idea</u>: build one feature at a time, associated with one term of the GAM  $\rightarrow$  gradient boosting

- 1) Compute  $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$  to form the 1st model  $g(\hat{y}) = \beta_0$ . The residual is  $r = y - \hat{y} = y - p_0$  ( $p_0$  proportion of the majority class)
- 2) Build one feature  $x_1$  or a pair of features  $(x_1, x_2)$  discriminative wrt the residual (see next slide)



<u>Idea</u>: build one feature at a time, associated with one term of the GAM  $\rightarrow$  gradient boosting

- 1) Compute  $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$  to form the 1st model  $g(\hat{y}) = \beta_0$ . The residual is  $r = y - \hat{y} = y - p_0$  ( $p_0$  proportion of the majority class)
- 2) Build one feature  $x_1$  or a pair of features  $(x_1, x_2)$  discriminative wrt the residual (see next slide)
- 3) Fit a shape function  $f_1(x_1)$  (or  $f_{1,2}(x_1, x_2)$ ) to the residual



<u>Idea</u>: build one feature at a time, associated with one term of the GAM  $\rightarrow$  gradient boosting

- 1) Compute  $\beta_0 = \ln\left(\frac{p_0}{1-p_0}\right)$  to form the 1st model  $g(\hat{y}) = \beta_0$ . The residual is  $r = y - \hat{y} = y - p_0$  ( $p_0$  proportion of the majority class)
- 2) Build one feature  $x_1$  or a pair of features  $(x_1, x_2)$  discriminative wrt the residual (see next slide)
- 3) Fit a shape function  $f_1(x_1)$  (or  $f_{1,2}(x_1, x_2)$ ) to the residual
- 4) Compute the new model:  $g(\hat{y}) = g(\hat{y}) + f_1(x_1)$  (or  $g(\hat{y}) + f_{1,2}(x_1, x_2)$ ) and the new residual  $r = y \hat{y}$ , and go back to step 2



Fitness function for the Genetic Programming algorithm:

Single feature case

Shallow tree (maximum 4 leaves) Feature fitness: RMS error of the inducted tree with the residual  $y - \hat{y}$  Feature pair case

FAST algorithm, the target being the residual  $y - \hat{y}$ 



Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.





#### RESULTS

Example of a model (the lower the *y* value, the higher the probability to have a DVCS event):





- 1. Feature construction
- 2. Using assumption on variable distributions to guide GAM/GA2M fitting



## 1. Feature construction

## 2. Using assumption on variable distributions to guide GAM/GA2M fitting

#### Some works use the a priori monotonicity of the input variables w.r.t. the target

Kotłowski, W., & Słowiński, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.

Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.



## 1. Feature construction

2. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target Kotłowski, W., & Słowiński, R. (2009, June). Rule learning with monotonicity constraints. *ICML 2009.* Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. *NIPS 2016*.

#### Monotonicity in physics?





# 1. Feature construction

2. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target Kotłowski, W., & Słowiński, R. (2009, June). Rule learning with monotonicity constraints. *ICML 2009.* Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. *NIPS 2016.* 



## BITONICITY



Bitonicity: either monotonic, or increasing then decreasing, or decreasing then increasing (i.e. unimodal)

Bitonicity criteria:

difference between the function and its cumulative maximum/minimum



# BITONICITY



Bitonicity: either monotonic, or increasing then decreasing, or decreasing then increasing (i.e. unimodal)

Bitonicity criteria:

difference between the function and its cumulative maximum/minimum

#### Penalization:

- in feature construction: fitness =  $s \lambda b$
- in shape functions with regularization in spline fitting



### RESULTS

 $angle(p^{\gamma_2}, p^{\gamma_1} + p^{\gamma_2})$ 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 -0.5 -0.5 -1.0 2.5 7.5 10.0 7.5 10.0 12.5 0.0 5.0 12.5 15.0 17.5 0.0 2.5 5.0 15.0 17.5

|                               | Accuracy      | Bitonicity score (penalty) |
|-------------------------------|---------------|----------------------------|
| Without bitonicity constraint | 0.738 ± 0.008 | 0.041 ± 0.048              |
| With bitonicity constraint    | 0.735 ± 0.006 | $0.025 \pm 0.046$          |



# RESULTS

|                               | Accuracy      | Bitonicity score (penalty) |
|-------------------------------|---------------|----------------------------|
| Without bitonicity constraint | 0.738 ± 0.008 | 0.041 ± 0.048              |
| With bitonicity constraint    | 0.735 ± 0.006 | 0.025 ± 0.046              |

#### Bitonicity penalties distributions:





# CONCLUSION

- GAM and GA2M: intelligible models, not perfectly transparent but more flexible than a rule base
- Gives good results on CLAS12 data particularly when exploiting feature construction
- Prior knowledge to include: bitonicity of the most discriminative variables
- Using this prior knowledge leads to simpler models that remain efficient
  - $\rightarrow$  Enforcing bitonicity is equivalent to increasing the regularization parameter
  - → The model is more understandable when it matches prior knowledge on the input variables



# CONCLUSION

- GAM and GA2M: intelligible models, not perfectly transparent but more flexible than a rule base
- Gives good results on CLAS12 data particularly when exploiting feature construction
- Prior knowledge to include: bitonicity of the most discriminative variables
- Using this prior knowledge leads to simpler models that remain efficient
  - $\rightarrow$  Enforcing bitonicity is equivalent to increasing the regularization parameter
  - → The model is more understandable when it matches prior knowledge on the input variables

# Thank you for listening!





