

## MACHINE LEARNING FOR CLAS12 DATA ANALYSIS WITH GENERALZED ADDITIVE MODELS

## INTRODUCTION

- Physics objective: tomography of the nucleon through Generalized Parton Distributions (GPDs)
$\rightarrow$ Correlation between longitudinal momentum and transverse position of the partons in the nucleon

- Accessed through exclusive inelastic processes including Deeply Virtual Compton Scattering (DVCS)

list
lish


## INTRODUCTION

- Jefferson Lab: 10.6 GeV electron beam
- CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (ep $\rightarrow e p \gamma$ )
Machine learning approach to be compared to classical approach


## INTERPRETABLE / TRANSPARENT / INTELLIGIBLE MACHINE LEARNING

- Interpretability: it is defined as the ability to explain or to provide the meaning in understandable terms to a human
- Transparency: a model is considered to be transparent if by itself it is understandable. A model can feature different degrees of understandability
- Intelligibility (or understandability) denotes the characteristic of a model to make a human understand its function - how the model works without any need for explaining its internal structure or the algorithmic means by which the model processes data internally

1The lack of interpretability is controversial

## INTERPRETABLE / TRANSPARENT / INTELLIGIBLE MACHINE LEARNING

## Models for which post-hoc analysis is not needed



## Decision trees

## Rule bases

```
(inv_masss_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv_masss_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8)
(energy_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone_angle_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
(energy_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65)
(energy_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)
(MM_eg1 in [1.298545, 1.304201, inf, inf]) and (energy_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)
(energy_g1 in [3.333313, 3.333823, inf, inf]) and (MM_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82)
(energy_g1 in [3.100909, 3.101237, inf, inf]) and (MM_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
(MM_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)
(cone_angle_g1 in [16.137178, 21.604087, inf, inf]) and (MM_epg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)
```


# INTERPRETABLE / TRANSPARENT / INTELLIGIBLE MACHINE LEARNING 

## Models for which post-hoc analysis is not needed



Decision trees

$$
\begin{gathered}
\substack{ \\
g(E(Y))=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\\
f_{3}\left(x_{3}\right)+\ldots+f_{m}\left(x_{m}\right)}
\end{gathered}
$$

Generalized Additive Models (GAM)

## Rule bases

```
(inv_masss_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv_masss_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8)
```

(inv_masss_g1g2 in [-inf, -inf, 0.665977, 0.666042]) and (inv_masss_g1g2 in [0.007705, 0.007706, inf, inf]) => Class=DVMP (CF = 0.8)
(energy_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone_angle_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
(energy_g1 in [-inf, -inf, 2.209962, 2.21012]) and (cone_angle_g1 in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
(energy_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65)
(energy_g1 in [-inf, -inf, 3.100969, 3.101338]) and (MM_eg1 in [0.525376, 0.525439, inf, inf]) => Class=DVMP (CF = 0.65)
(energy_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)
(energy_g1 in [-inf, -inf, 1.735166, 2.66702]) and (MM_eg1 in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)
(MM_eg1 in [1.298545, 1.304201, inf, inf]) and (energy_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)
(MM_eg1 in [1.298545, 1.304201, inf, inf]) and (energy_g1 in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)
(energy_g1 in [3.333313, 3.333823, inf, inf]) and (MM_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82)
(energy_g1 in [3.333313, 3.333823, inf, inf]) and (MM_eg1 in [-inf, -inf, 0.96117, 0.961204]) => Class=DVCS (CF = 0.82)
(energy_g1 in [3.100909, 3.101237, inf, inf]) and (MM_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
(energy_g1 in [3.100909, 3.101237, inf, inf]) and (MM_eg1 in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
(MM_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)
(MM_eg1 in [-inf, -inf, 0.852413, 0.852521]) and (energy_g1 in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)
(cone_angle_g1 in [16.137178, 21.604087, inf, inf]) and (MM_epg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)

```
(cone_angle_g1 in [16.137178, 21.604087, inf, inf]) and (MM_epg1 in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)
```


## GENERALIZED ADDITIVE MODELS (GAM)

## Generalized Linear Models (GLM) :

$$
g(\hat{y})=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

$g(\hat{y})=\hat{y}$ for regression, $g(\hat{y})=\ln \left(\frac{\hat{y}}{1-\hat{y}}\right)$ for classification

## GENERALIZED ADDITIVE MODELS (GAM)

## Generalized Linear Models (GLM) :

$$
g(\hat{y})=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

$g(\hat{y})=\hat{y}$ for regression, $g(\hat{y})=\ln \left(\frac{\hat{y}}{1-\hat{y}}\right)$ for classification

## Generalized Additive Models (GAM) :

$$
g(\hat{y})=\beta_{0}+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

## GENERALIZED ADDITIVE MODELS (GAM)

## Generalized Linear Models (GLM) :

$$
g(\hat{y})=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

$g(\hat{y})=\hat{y}$ for regression, $g(\hat{y})=\ln \left(\frac{\hat{y}}{1-\hat{y}}\right)$ for classification

Generalized Additive Models (GAM) :

$$
g(\hat{y})=\beta_{0}+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

Generalized Additive Models with pairwise interactions (GA2M) :

$$
g(\hat{y})=\beta_{0}+\sum f_{i}\left(x_{i}\right)+\sum f_{i, j}\left(x_{i}, x_{j}\right)
$$

## GENERALIZED ADDITIVE MODELS (GAM)

## Generalized Linear Models (GLM) :

$$
g(\hat{y})=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

$g(\hat{y})=\hat{y}$ for regression, $g(\hat{y})=\ln \left(\frac{\hat{y}}{1-\hat{y}}\right)$ for classification

Generalized Additive Models (GAM) :

$$
g(\hat{y})=\beta_{0}+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

Generalized Additive Models with pairwise interactions (GA2M) :


## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
$\rightarrow$ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates


Feature candidate example $\rightarrow$ Nodes are mathematical operators
$\rightarrow$ Leaves are base variables

## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
$\rightarrow$ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates


Feature candidate example $\rightarrow$ Nodes are mathematical operators
$\rightarrow$ Leaves are base variables

## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
$\rightarrow$ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates


## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
$\rightarrow$ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates


## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
$\rightarrow$ Motivation: these models do not build a sufficiently complex internal representation of the data

Constrained Genetic Programming: evolve a population of high-level feature candidates


Evaluation function?


## FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
$\rightarrow$ gradient boosting

## FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
$\rightarrow$ gradient boosting
Objective function: minimize the cross entropy $-y \ln (\hat{y})-(1-y) \ln (1-\hat{y})$

## FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
$\rightarrow$ gradient boosting
Objective function: minimize the cross entropy $-y \ln (\hat{y})-(1-y) \ln (1-\hat{y})$

1) Compute $\beta_{0}=\ln \left(\frac{p_{0}}{1-p_{0}}\right)$ to form the 1st model $g(\hat{y})=\beta_{0}$.

The residual is $r=y-\hat{y}=y-p_{0}$ ( $p_{0}$ proportion of the majority class)

## FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
$\rightarrow$ gradient boosting
Objective function: minimize the cross entropy $-y \ln (\hat{y})-(1-y) \ln (1-\hat{y})$

1) Compute $\beta_{0}=\ln \left(\frac{p_{0}}{1-p_{0}}\right)$ to form the 1st model $g(\hat{y})=\beta_{0}$.

The residual is $r=y-\hat{y}=y-p_{0}$ ( $p_{0}$ proportion of the majority class)
2) Build one feature $x_{1}$ or a pair of features $\left(x_{1}, x_{2}\right)$ discriminative wrtt the residual (see next slide)

## FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
$\rightarrow$ gradient boosting
Objective function: minimize the cross entropy $-y \ln (\hat{y})-(1-y) \ln (1-\hat{y})$

1) Compute $\beta_{0}=\ln \left(\frac{p_{0}}{1-p_{0}}\right)$ to form the 1st model $g(\hat{y})=\beta_{0}$.

The residual is $r=y-\hat{y}=y-p_{0}$ ( $p_{0}$ proportion of the majority class)
2) Build one feature $x_{1}$ or a pair of features $\left(x_{1}, x_{2}\right)$ discriminative wrtt the residual (see next slide)
3) Fit a shape function $f_{1}\left(x_{1}\right)$ (or $f_{1,2}\left(x_{1}, x_{2}\right)$ ) to the residual

## FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
$\rightarrow$ gradient boosting
Objective function: minimize the cross entropy $-y \ln (\hat{y})-(1-y) \ln (1-\hat{y})$

1) Compute $\beta_{0}=\ln \left(\frac{p_{0}}{1-p_{0}}\right)$ to form the 1st model $g(\hat{y})=\beta_{0}$.

The residual is $r=y-\hat{y}=y-p_{0}$ ( $p_{0}$ proportion of the majority class)
2) Build one feature $x_{1}$ or a pair of features ( $x_{1}, x_{2}$ ) discriminative wrt the residual (see next slide)
3) Fit a shape function $f_{1}\left(x_{1}\right)$ (or $f_{1,2}\left(x_{1}, x_{2}\right)$ ) to the residual
4) Compute the new model: $g(\hat{y})=g(\hat{y})+f_{1}\left(x_{1}\right)$ (or $\left.g(\hat{y})+f_{1,2}\left(x_{1}, x_{2}\right)\right)$ and the new residual $r=y-\hat{y}$, and go back to step 2

## FEATURE CONSTRUCTION IN GA2M

Fitness function for the Genetic Programming algorithm:

## Single feature case

Shallow tree (maximum 4 leaves) Feature fitness: RMS error of the inducted tree with the residual $y-\hat{y}$

## Feature pair case

FAST algorithm, the target being the residual $y-\hat{y}$



Lou, Y., Caruana, R., Gehrke, J., \& Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.


| Neural network | $0.7012 \pm 0,0062$ |
| :--- | :---: |
| Linear SVM | 0.6911 |

C4.5 with feature construction $\quad 0.7266 \pm 0,0086$
( 15 nodes using feature
Baselines: construction)
AdaBoost with feature construction
$0.7280 \pm 0.0063$
( 50 trees of 1 node each with feature construction)
Gradient Boosting with feature construction
$0.7446 \pm 0.0071$
(100 trees of 7 nodes each with feature construction)

## RESULTS

Example of a model (the lower the $y$ value, the higher the probability to have a DVCS event):


$+$

## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
2. Using assumption on variable distributions to guide GAM/GA2M fitting

## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
2. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target
Kotłowski, W., \& Słowiński, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.
Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., \& Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.

## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
2. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target
Kotłowski, W., \& Słowiński, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.
Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., \& Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.

Monotonicity in physics?




Angle between hypothetical $\pi^{0}$ and photon

$$
\operatorname{angle}\left(p^{\gamma_{1}}, p^{\gamma_{1}}+p^{\gamma_{2}}\right)
$$

Missing mass $e p \rightarrow e \gamma$

$$
\sqrt{\left(\left\|p^{e}\right\|+\left\|p^{\gamma_{1}}\right\|-10,6-M_{p}\right)^{2}-\left\|p^{e}+p^{\gamma_{1}}\right\|^{2}}
$$

## HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
2. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target
Kotłowski, W., \& Słowiński, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.
Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., \& Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.


Bitonicity


Angle between hypothetical $\pi^{0}$ and photon

$$
\operatorname{angle}\left(p^{\gamma_{1}}, p^{\gamma_{1}}+p^{\gamma_{2}}\right)
$$




Missing mass $e p \rightarrow e \gamma$

$$
\sqrt{\left(\left\|p^{e}\right\|+\left\|p^{\gamma_{1}}\right\|-10,6-M_{p}\right)^{2}-\left\|p^{e}+p^{\gamma_{1}}\right\|^{2}}
$$

## BITONICITY



Bitonicity: either monotonic, or increasing then decreasing, or decreasing then increasing (i.e. unimodal)

Bitonicity criteria: difference between the function and its cumulative maximum/minimum

## BITONICITY



Bitonicity: either monotonic, or increasing then decreasing, or decreasing then increasing (i.e. unimodal)

Bitonicity criteria: difference between the function and its cumulative maximum/minimum

## Penalization:

- in feature construction: fitness $=s-\lambda b$
- in shape functions with regularization in spline fitting


## RESULTS

$$
\operatorname{angle}\left(p^{\gamma_{2}}, p^{\gamma_{1}}+p^{\gamma_{2}}\right)
$$




Accuracy
Bitonicity score (penalty)

| Without bitonicity constraint | $0.738 \pm 0.008$ | $0.041 \pm 0.048$ |
| ---: | :--- | :--- |
| With bitonicity constraint | $0.735 \pm 0.006$ | $0.025 \pm 0.046$ |

## RESULTS

|  | Accuracy | Bitonicity score (penalty) |
| ---: | :---: | :---: |
| Without bitonicity constraint | $0.738 \pm 0.008$ | $0.041 \pm 0.048$ |
| With bitonicity constraint | $0.735 \pm 0.006$ | $0.025 \pm 0.046$ |

Bitonicity penalties distributions:


## CONCLUSION

- GAM and GA2M: intelligible models, not perfectly transparent but more flexible than a rule base
- Gives good results on CLAS12 data particularly when exploiting feature construction
- Prior knowledge to include: bitonicity of the most discriminative variables
- Using this prior knowledge leads to simpler models that remain efficient
$\rightarrow$ Enforcing bitonicity is equivalent to increasing the regularization parameter
$\rightarrow$ The model is more understandable when it matches prior knowledge on the input variables


## CONCLUSION

- GAM and GA2M: intelligible models, not perfectly transparent but more flexible than a rule base
- Gives good results on CLAS12 data particularly when exploiting feature construction
- Prior knowledge to include: bitonicity of the most discriminative variables
- Using this prior knowledge leads to simpler models that remain efficient
$\rightarrow$ Enforcing bitonicity is equivalent to increasing the regularization parameter
$\rightarrow$ The model is more understandable when it matches prior knowledge on the input variables


## Thank you for listening!









