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INTRODUCTION

Parton Distributions (GPDs)

Physics objective: tomography of the nucleon through Generalized

— Correlation between longitudinal momentum and transverse position of the

partons in the nucleon

Transverse
omentum

* Accessed through exclusive
inelastic processes including

Deeply Virtual Compton
Scattering (DVCS)
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INTRODUCTION

Jefferson Lab: 10.6 GeV electron beam

CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (ep — epy)

Machine learning approach to be compared to classical approach

AN Overview
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

* Interpretability: it is defined as the ability to explain or to provide the
meaning in understandable terms to a human

* Transparency. a model is considered to be transparent if by itself it is
understandable. A model can feature different degrees of
understandability

* Intelligibility (or understandability) denotes the characteristic of a model
to make a human understand its function — how the model works —
without any need for explaining its internal structure or the algorithmic
means by which the model processes data internally

AThe lack of interpretability is controversial

Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAl): Concepts, Taxonomies, Opportunities and Challenges toward Responsible
Al." Information Fusion (2019).
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

Models for which post-hoc analysis
IS not needed

Decision trees

Rule bases

(inv_masss_glg2 in [-inf, -inf, 0.665977, 0.666042]) and (inv_masss_glg2 in [0.007705, ©.007706, inf, inf]) => Class=DVMP (CF = 0.8)
(energy_gl in [-inf, -inf, 2.209962, 2.21012]) and (cone_angle_gl in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
(energy_gl in [-inf, -inf, 3.100969, 3.101338]) and (MM_egl in [@.525376, ©.525439, inf, inf]) => Class=DVMP (CF = 0.65)

(energy_gl in [-inf, -inf, 1.735166, 2.66702]) and (MM_egl in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)

(MM_egl in [1.298545, 1.304201, inf, inf]) and (energy_gl in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)

(energy_gl in [3.333313, 3.333823, inf, inf]) and (MM_egl in [-inf, -inf, ©.96117, 0.961204]) => Class=DVCS (CF = 0.82)
(energy_gl in [3.100909, 3.101237, inf, inf]) and (MM_egl in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
(MM_egl in [-inf, -inf, ©.852413, ©0.852521]) and (energy_gl in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)

(cone_angle_gl in [16.137178, 21.604087, inf, inf]) and (MM_epgl in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)

B
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE
MACHINE LEARNING

Models for which post-hoc analysis L
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g(E(Y)) = Bo + flx) + f2(x2) +
f3(x3) + oo + fin(xm)

Decision trees

Generalized Additive Models
GAM

Rule bases
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[-inf, -inf, 2.209962, 2.21012]) and (cone_angle_gl in [-inf, -inf, 16.272992, 16.275288]) => Class=DVMP (CF = 0.76)
[-inf, -inf, 3.100969, 3.101338]) and (MM_egl in [0.525376, ©.525439, inf, inf]) => Class=DVMP (CF = 0.65)
[-inf, -inf, 1.735166, 2.66702]) and (MM_egl in [-1.85998, -1.857006, inf, inf]) => Class=DVMP (CF = 0.61)
.298545, 1.304201, inf, inf]) and (energy_gl in [-inf, -inf, 4.182, 4.182101]) => Class=DVMP (CF = 0.66)
[3.333313, 3.333823, inf, inf]) and (MM _egl in [-inf, -inf, ©.96117, ©.961204]) => Class=DVCS (CF = 0.82)
[3.100909, 3.101237, inf, inf]) and (MM _egl in [-inf, -inf, 1.084021, 1.084045]) => Class=DVCS (CF = 0.8)
inf, -inf, ©.852413, 0.852521]) and (energy_gl in [2.103109, 2.103411, inf, inf]) => Class=DVCS (CF = 0.76)

(cone_angle_gl in [16.137178, 21.604087, inf, inf]) and (MM_epgl in [-inf, -inf, -0.538689, -0.537701]) => Class=DVCS (CF = 0.56)
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[0.007705, ©.007706, inf, inf]) => Class=DVMP (CF = 0.8)
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GENERALIZED ADDITIVE MODELS (GAM)

Generalized Linear Models (GLM) :
g@) = Bo+B1x1+ ..+ Baxqg
g(¥) = y for regression, g(y) = ln(l%y) for classification

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.
Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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GENERALIZED ADDITIVE MODELS (GAM)

Generalized Linear Models (GLM) :
g@) = Bo+B1x1+ ..+ Baxqg
g(¥) = y for regression, g(y) = ln(l%y) for classification
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GENERALIZED ADDITIVE MODELS (GAM)

Generalized Linear Models (GLM) :
g@) = Bo+B1x1+ ..+ Baxqg
g(¥) = y for regression, g(y) = ln(l%y) for classification

Generalized Additive Models (GAM) :

g(@) = Bo+ filx1) + ..+ fa(xa)
Generalized Additive Models with pairwise interactions (GA2M) :

9@) = Bo+ ) file) + ) fiCeix)

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.
Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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GENERALIZED ADDITIVE MODELS (GAM)

Generalized Linear Models (GLM) :
g@) = Bo+B1x1+ ..+ Baxqg
g(¥) = y for regression, g(y) = ln(l%y) for classification

Generalized Additive Models (GAM) :

g@) = Bo+ fi(x1) + .+ fa(xq)
Generalized Additive Models with pairwise interactions (GA2M) :

9@) = Bo+ ) file) + ) fiCeix)
g(9) = -8,42 + = +oow

f1(x1) o

[

0.00

6 11 1z 13

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.
Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
—> Motivation: these models do not build a sufficiently complex internal
representation of the data

Constrained Genetic Programming: evolve a population of high-level
feature candidates

/ Feature candidate example
ps — Nodes are mathematical operators
— Leaves are base variables
p
Pt P¥1

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
—> Motivation: these models do not build a sufficiently complex internal
representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates D%lm éxm mph
A, g;pm D‘é

IN2P3/IRFU workshop | Noélie Cherrier | 13




HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
—> Motivation: these models do not build a sufficiently complex internal
representation of the data

Constrained Genetic Programming: evolve a population of high-level

Conetane Cone D%E fﬂ Dph
A, gfmpm D‘%
gy by o i
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
—> Motivation: these models do not build a sufficiently complex internal
representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates D%E é% ]Q|

i éihm D%
F e i
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FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting
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FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)
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FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute By = In (1 -
0
Theresidualisr =y -9 =y —py (p, proportion of the majority class)

) to form the 1st model g(9) = B,.
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FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute B, = ln( Bo ) to form the 1st model g(9) = B,.

1-po
Theresidualisr =y -9 =y —py (po proportion of the majority class)

2) Build one feature x; or a pair of features (x;, x,) discriminative wrt the residual
(see next slide)
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FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute B, = ln( Bo ) to form the 1st model g(9) = B,.

1-po
Theresidualisr =y -9 =y —py (po proportion of the majority class)

2) Build one feature x; or a pair of features (x;, x,) discriminative wrt the residual
(see next slide)

3) Fit a shape function £, (x1) (or fi ,(x1, x5)) to the residual
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FEATURE CONSTRUCTION IN GA2M

Idea: build one feature at a time, associated with one term of the GAM
—> gradient boosting

Objective function: minimize the cross entropy —yIn(y) — (1 — y) In(1 — 9)

1) Compute B, = In (1”;’9
—Fo

Theresidualisr =y -9 =y —p, (p, proportion of the majority class)

) to form the 1st model g(9) = B,.

2) Build one feature x; or a pair of features (x;, x,) discriminative wrt the residual
(see next slide)

3) Fit a shape function £, (x1) (or fi ,(x1, x5)) to the residual

4) Compute the new model: g(9) = g(») + f1(x,) (or g() + f12(x1,x3)) and the
new residual r =y — 9, and go back to step 2
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FEATURE CONSTRUCTION IN GA2M

Fitness function for the Genetic Programming algorithm:

Single feature case Feature pair case
Shallow tree (maximum 4 leaves) . FAST algorithm, the target being the
Feature fitness: RMS error of the . residual y — y
inducted tree with the residual y — y § ¢

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.
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clasl2

RESULTS e

E 0.68 |

Neural network 0.7012 + 0,0062
Linear SVM 0.6911

C4.5 with feature construction 0.7266 + 0,0086

(15 nodes using feature
Baselines: construction)

AdaBoost with feature construction 0.7280 = 0.0063

(50 trees of 1 node each with
feature construction)

Gradient Boosting with feature construction 0.7446 + 0.0071

(100 trees of 7 nodes each with
feature construction)
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RESULTS

Example of a model (the lower the y value, the higher the probability to have a
DVCS event):

ps + o5 +pyt angle(p¥?,p¥* + p¥2)
- + 7 +
6 7 8 9 10 11 12 13 00 25 50 75 100 125 150 17.5
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
7. Using assumption on variable distributions to guide GAM/GA2M fitting
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
7. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target

Kottowski, W., & Stowinski, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.
Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
7. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target

Kottowski, W., & Stowinski, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.
Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.

Monotonicity in physics?

Drp iy Angle between hypothetical ©° and
- ! photon

00000

angle(p¥s, p¥t + p¥2)

00000

00000

Data histogram Output probability

Missing mass ep — ey

2
\/(Ilpell +Ipv1ll = 10,6 — M)~ — llpe + p¥1 |2

00000
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HOW TO USE PHYSICS KNOWLEDGE?

1. Feature construction
7. Using assumption on variable distributions to guide GAM/GA2M fitting

Some works use the a priori monotonicity of the input variables w.r.t. the target

Kottowski, W., & Stowinski, R. (2009, June). Rule learning with monotonicity constraints. ICML 2009.
Fard, M. M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. NIPS 2016.

Mon ICity In physics? Bitonicity
Drp iy Angle between hypothetical ©° and
- ! photon
00000 ] angle(pY1, pY1 + pYZ)

Data histogram Output probability
Missing mass ep — ey
h 2

\/(Ilpell + [lpv2]l — 10,6 — M,,)" — [Ip€ + p¥1||?
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BITONICITY

N Bitonicity: either monotonic, or
increasing then decreasing, or
N decreasing then increasing

o oz o os s e o0 o2 o e o 1o (i.€. unimodal)

1.00
0.90

-1.0

Bitonicity criteria:
difference between the
function and its cumulative
maximum/minimum

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

0.8

0.6

0.4

0.2
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BITONICITY

1.0
0.8
0.6
0.4
0.2
0.0
-0.2

0.0 0.2 0.4

Penalization:

-1.0

-1.2

=14

-1.6

-1.8

0.6 0.8 1.0 0.0 0.2 0.4

1.00
0.90

-1.0

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

0.8

0.6

0.4

0.2

0.6

Bitonicity: either monotonic, or
increasing then decreasing, or
decreasing then increasing

s 10 (l.e. unimodal)

Bitonicity criteria:
difference between the
function and its cumulative
maximum/minimum

° In feature construction: fitness =s — Ab
° in shape functions with regularization in spline fitting
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RESULTS
angle(pyz’ pY1 _|_ pYZ)

0.5+ 0.5 |
Accuracy Bitonicity score (penalty)
Without bitonicity constraint 0.738 £ 0.008 0.041 + 0.048
With bitonicity constraint 0.735 £ 0.006 0.025 £ 0.046
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RESULTS

Accuracy Bitonicity score (penalty)
Without bitonicity constraint 0.738 = 0.008 0.041 +0.048
With bitonicity constraint 0.735 = 0.006 0.025 = 0.046

Bitonicity penalties distributions:

Bitonicities (RGAM no bitonic)

40

|1 I I}
0.2 0.3 0.4 0.5
Bitonicities (RGAM full bitonic)

100 -

80 4

60

40 -

20 4

0.0 0.1 0.2 0.3 0.4 0.5 ﬁ
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CONCLUSION

GAM and GA2M: intelligible models, not perfectly transparent but more
flexible than a rule base

Gives good results on CLAS12 data particularly when exploiting feature
construction

Prior knowledge to include: bitonicity of the most discriminative
variables

Using this prior knowledge leads to simpler models that remain efficient

— Enforcing bitonicity is equivalent to increasing the regularization parameter
—> The model is more understandable when it matches prior knowledge on the
input variables
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CONCLUSION

°* GAM and GA2M: intelligible models, not perfectly transparent but more
flexible than a rule base

* Gives good results on CLAS12 data particularly when exploiting feature
construction

* Prior knowledge to include: bitonicity of the most discriminative
variables

* Using this prior knowledge leads to simpler models that remain efficient

— Enforcing bitonicity is equivalent to increasing the regularization parameter
—> The model is more understandable when it matches prior knowledge on the
input variables

Thank you for listening!
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Selected DVCS events
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Selected DVCS events
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