Deep learning in ATLAS $t\bar{t}H(\rightarrow b\bar{b})$ analysis

Yann Coadou mostly reporting work from Ziyu GUO's thesis in co-supervision with Thierry Artières, LIS/Ecole Centrale Marseille

CPPM Marseille

IN2P3/IRFU Machine Learning workshop CC-IN2P3, 23 January 2020

• Ziyu GUO's PhD thesis: 2016-2019

"Search for the Higgs boson in the $t\bar{t}H$ ($H \rightarrow b\bar{b}$) channel in the ATLAS experiment at the LHC using machine learning methods and synchronization of the ITk geometry description for simulation and radiation studies for the HL-LHC ATLAS upgrade"

- Inter-doctoral school grant at Aix-Marseille Université
- Collaboration between CPPM and Laboratoire Informatique et Systèmes (LIS) at AMU
- Co-supervision with Thierry Artières, LIS/Ecole Centrale Marseille
- Defended on 5 November 2019
- Manuscript and details: CERN-THESIS-2019-222

\gg Search for the Higgs boson in $tar{t}H$ $(H o bar{b})$

- $t\bar{t}H$ production: direct measurement of top Yukawa coupling
- Dominant decay mode: $H
 ightarrow b ar{b}$ with 58% branching ratio
- Single-lepton channel: large statistics and lepton signature

$^{>}$ Search for the Higgs boson in $tar{t}H$ $(H o bar{b})$

- Rare $t\bar{t}H$ signal production w.r.t. main $t\bar{t}$ + jets background
- Hard to reconstruct:
 - multiple jets/b-jets in final state
 - limited *b*-tagging efficiency
 - ambiguity to associate jets to initiating quarks or gluons
- Large theoretical uncertainties in $t\bar{t}$ + jets Monte Carlo modeling

Using BDT for reconstruction and classification

- Reconstruction step: solve ambiguity between jets and partons
 - Reco BDT: pick jet combination with highest BDT score as correct matching (trained on correct/wrong combinations in *ttH* sample)
 - Likelihood discriminant (LHD): probability distribution function under $t\bar{t}H/t\bar{t}$ hypotheses using 1D variable distributions from all possible combinations
 - MEM: exploit full matrix element calculation

 \bullet Classification step: use information from all reconstruction MVAs + event level variables

Yann Coadou (CPPM) — Deep learning in ATLAS $t\bar{t}H(\rightarrow b\bar{b})$ analysis

Systematic uncertainties

Sensitivity driven by systematic uncertainties

- Most dominant systematic sources: tt + ≥1b modelling
 - Differences between generators
- Sub-leading source: low statistics of MC samples
- Other important uncertainties:
 - *ttH* modeling
 - *b*-tagging efficiency
 - Jet energy scale and resolution

- Combined fit across single- and di-lepton regions: $\mu = 0.84^{+0.64}_{-0.61}$
 - Dominated by single-lepton channel

Analysis result

• $t\bar{t}H$ excess significance: 1.4 σ observed (1.6 σ expected)

- Excluding $\mu > 2.0$ at 95% confidence level
- Results published in Phys.Rev.D 97 (2018) 072016

• Baseline MVA techniques: 2 steps, 3 algorithms

- Reconstruction step:
 - Matrix Element Method
 - Likelihood: no variable correlations, using all combinations
 - Reconstruction BDT: exploiting variable correlations, only one combination
 - best combination only: limited truth matching fraction

best1	best2	best3	best4
30%	26%	14%	11%

- Classification BDT: use info from reco MVAs and event-level variables to separate $t\bar{t}H$ and $t\bar{t}$
- Goal: end-to-end model to learn more information from inputs
 ⇒ both variable correlations and more combinations

[§] Using RNN for $t\bar{t}H$ and $t\bar{t}$ classification

- Recurrent neural networks (RNN) deal with variable-size sequence data
 - aggregate information: keeping information of earlier frames while seeing more of a sequence
 - e.g. popular in natural language processing

[§] Using RNN for $t\bar{t}H$ and $t\bar{t}$ classification

- Recurrent neural networks (RNN) deal with variable-size sequence data
 - aggregate information: keeping information of earlier frames while seeing more of a sequence
 - e.g. popular in natural language processing

Using RNN for $t\bar{t}H$ and $t\bar{t}$ classification

- Recurrent neural networks (RNN) deal with variable-size sequence data
 - aggregate information: keeping information of earlier frames while seeing more of a sequence
 - e.g. popular in natural language processing
- Long-term dependence issue: early frames do not impact weight update very much

Using RNN for $t\bar{t}H$ and $t\bar{t}$ classification

- Recurrent neural networks (RNN) deal with variable-size sequence data
 - aggregate information: keeping information of earlier frames while seeing more of a sequence
 - e.g. popular in natural language processing
- Long-term dependence issue: early frames do not impact weight update very much

- \bullet Long short-term memory (LSTM), a variation of RNN
 - using gates to regulate information flow
 - can also use Gated Recurrent Unit (GRU), similar performance here

● Event = sequence, combinations = frames, sorted by recoBDT score LHD: all combs, ✓ Higgs, ✓ b-tagging

RNN: 3 combs, X Higgs, X b-tagging

• Event = sequence, combinations = frames, sorted by recoBDT score

- Fixing sequence length to 12
 - ≥12 combinations (=12 in 6je4bi@85%)
 - Performance improved from 3 to 12
 - No impact of changing ordering

LHD: all combs, ✓ Higgs, ✓ *b*-tagging RNN: 12 combs. ✗ Higgs, ✗ *b*-tagging

• Event = sequence, combinations = frames, sorted by recoBDT score BDT: reco MVAs, Higgs, b-tagging

 h_{t} with 100 neurons

- Fixing sequence length to 12
 - ≥12 combinations (=12 in 6je4bi@85%)
 - Performance improved from 3 to 12
 - No impact of changing ordering

RNN: 12 combs, ✓ Higgs, ✗ b-tagging

- Similar input to classification BDT, w/o LHD and MEM
 - Global kinematics, reco BDT inputs with Higgs info

• Event = sequence, combinations = frames, sorted by recoBDT score BDT: reco MVAs, \checkmark Higgs, \checkmark b-tagging

 h_t with 100 neurons

- Fixing sequence length to 12
 - ≥12 combinations (=12 in 6je4bi@85%)
 - Performance improved from 3 to 12
 - No impact of changing ordering

RNN: 12 combs. ✓ Higgs. ✓ *b*-tagging

- Similar input to classification BDT, w/o LHD and MEM
 - Global kinematics, reco BDT inputs with Higgs info
 - 6 jets *b*-tagging scores

- Hyper-parameter optimization with tree-structured Parzen estimators (TPE)
- Same inputs as classification BDT

PDT	un-optimized	optimized	
ועם	RNN	RNN	
0.789	0.788	0.790	

- Without using LHD and MEM as for BDT
- Solves reconstruction and classification in one step, using both correlations and combinations

- Hyper-parameter optimization with tree-structured Parzen estimators (TPE)
- Same inputs as classification BDT

PDT	un-optimized	optimized	
БЛІ	RNN	RNN	
0.789	0.788	0.790	

Using low-level features as input variables

 Previous studies using simplified simulation have shown DNN + low-level features surpass shallow networks using high level features • arXiv: 1402.4735

Using low-level features as input variables

CPPM

 Previous studies using simplified simulation have shown DNN + low-level features surpass shallow networks using high level features • arXiv: 1402.4735

High-level input features (physics motivated)

Same features as the previous binary RNN model

Low-level input features

 p_x , p_y , p_z , E and b-tagging of 8 objects: 6 jets + lepton and neutrino

- DNN with best combination only
- RNN: 12 combinations

	AUC on test
DNN low level	.772
DNN high level	.787
RNN low level	.781
RNN high level	.790

Using low-level features as input variables

CPPM

 Previous studies using simplified simulation have shown DNN + low-level features surpass shallow networks using high level features • arXiv: 1402.4735

High-level input features (physics motivated)

Same features as the previous binary RNN model

Low-level input features

 p_x , p_y , p_z , E and b-tagging of 8 objects: 6 jets + lepton and neutrino

- DNN with best combination only
- RNN: 12 combinations
- Using low-level features gives worse performance

ann Coadou	(CPPM)) — Deep 🛛	learning i	in ATLAS	$t\bar{t}H(\rightarrow$	bb)		
------------	--------	------------	------------	----------	-------------------------	-----	--	--

	AUC on test
DNN low level	.772
DNN high level	.787
RNN low level	.781
RNN high level	.790

¹ Using physics domain knowledge inside the NN

Incorporate domain knowledge into NN design (inspired by • arXiv: 1702.00748)

- Design a tree structure analogous to physical process (Feynman diagram)
- From leaves to the collision node, embed the low-level input space to another n-dimensional space
 - Leaves:

• Input: for each jet, lepton and neutrino, o = [px, py, pz, E, btag]

• Internal nodes:

• Children nodes information summed through tree structure

\sum Using physics domain knowledge inside the NN

- Signal-like tree, using best combination only
- Or replace tree with FC DNN for comparison

Using physics domain knowledge inside the NN

- Signal-like tree, using best combination only
- Or replace tree with FC DNN for comparison
- Use tree embedding for each combination, making up sequence input for RNN

artheta Using physics domain knowledge inside the NN

- Signal-like tree, using best combination only
- Or replace tree with FC DNN for comparison
- Use tree embedding for each combination, making up sequence input for RNN
- Also add in high-level inputs, used by BDT as well

artheta Using physics domain knowledge inside the NN

- Signal-like tree, using best combination only
- Or replace tree with FC DNN for comparison
- Use tree embedding for each combination, making up sequence input for RNN
- Also add in high-level inputs, used by BDT as well

Tree performance always better than regular DNN
 ⇒ tree structure helps to learn from low level features

• Mutated tree structures to be more signal-like or $t\bar{t}$ -like

Tree mutations

• Mutated tree structures to be more signal-like or $t\bar{t}$ -like

• Using either signal or $t\bar{t} + b\bar{b}$ -like tree and the best combination to separate $t\bar{t}H$ vs. $t\bar{t}$: small AUC difference

Models	AUC		
Wodels	test	val.	
single tree $+ 1$ FCC			
signal tree	0.781	0.785	
$tar{t}+bar{b}$ tree	0.784	0.787	

• $t\bar{t} + b\bar{b}$ -like tree gives marginal improvement on $t\bar{t}$ events labeling 57.0% \rightarrow 58.8%, deterioration on $t\bar{t}H$ events 77.4% \rightarrow 76.1%

⁹ Siamese training: using two tree topologies

- Goal: exploit both signal- and $t\bar{t} + b\bar{b}$ -like trees
- Siamese training: two trees with same architecture and shared weights
 - FC classifier: L1 distance between two events in embedding space
- signal-like tree model: (S_i, S_j) closer, (S_i, B_j) farther away
- $t\bar{t} + b\bar{b}$ -like tree model: (B_i, B_j) closer, (B_i, S_j) farther away

¹ Siamese training: using two tree topologies

- Goal: exploit both signal- and $t\bar{t} + b\bar{b}$ -like trees
- Siamese training: two trees with same architecture and shared weights
 - FC classifier: L1 distance between two events in embedding space
- signal-like tree model: (S_i, S_j) closer, (S_i, B_j) farther away
- $t\bar{t} + b\bar{b}$ -like tree model: (B_i, B_j) closer, (B_i, S_j) farther away
- Transfer Siamese-trained trees into new binary classifier: $t\bar{t}H$ (S) vs. $t\bar{t}(B)$
 - Feed in one event each time: S or B
 - Concatenate trees + FCs

⁹ Siamese training: using two tree topologies

- Goal: exploit both signal- and $t\bar{t} + b\bar{b}$ -like trees
- Siamese training: two trees with same architecture and shared weights
 - FC classifier: L1 distance between two events in embedding space
- signal-like tree model: (S_i, S_j) closer, (S_i, B_j) farther away
- $t\bar{t} + b\bar{b}$ -like tree model: (B_i, B_j) closer, (B_i, S_j) farther away
- Transfer Siamese-trained trees into new binary classifier: $t\bar{t}H$ (S) vs. $t\bar{t}(B)$
 - Feed in one event each time: S or B
 - Concatenate trees + FCs

• Unfortunately: Siamese models lead to almost the same performance

⁹ Difference between nominal and syst. samples

• Dominant impact on final fit performance: $t\overline{t} + \ge 1b$ MVA shape difference of nominal and systematic samples

- Difference exists in the nominal and syst samples, but small (but quite large compared to $t\bar{t}H$ presence)
- Goal: train a classifier insensitive to the difference between nominal and systematic samples (following

 Learning to Pivot with Adversarial Networks
)

16/19

Adversarial training to reduce syst. uncertainties

- Idea: train a discriminator adversarially to constrain the classifier to have similar outputs (or representations) for nominal & systematic samples:

- Alternating training:
 - Train classifier, discriminator fixed:
 - Goal 1: tTH vs. tT
 - Goal 2: fool discriminator to have nominal output close to systematic one

Adversarial training to reduce syst. uncertainties 🙀

 Idea: train a discriminator adversarially to constrain the classifier to have similar outputs (or representations) for nominal & systematic samples:

- Alternating training:
 - Train classifier, discriminator fixed:
 - Goal 1: $t\bar{t}H$ vs. $t\bar{t}$
 - Goal 2: fool discriminator to have nominal output close to systematic one
 - Train discriminator, classifier fixed:
 - Goal: discriminate nominal vs. systematic samples

Adversarial training to reduce syst. uncertainties 🙀

 Idea: train a discriminator adversarially to constrain the classifier to have similar outputs (or representations) for nominal & systematic samples:

- Alternating training:
 - Train classifier, discriminator fixed:
 - Goal 1: $t\bar{t}H$ vs. $t\bar{t}$
 - Goal 2: fool discriminator to have nominal output close to systematic one
 - Train discriminator, classifier fixed:
 - Goal: discriminate nominal vs. systematic samples

• Repeated till discriminator cannot distinguish nominal from systematic

Adversarial training to reduce syst. uncertainties 🙀

 Idea: train a discriminator adversarially to constrain the classifier to have similar outputs (or representations) for nominal & systematic samples:

- Alternating training:
 - Train classifier, discriminator fixed:
 - Goal 1: $t\bar{t}H$ vs. $t\bar{t}$
 - Goal 2: fool discriminator to have nominal output close to systematic one
 - Train discriminator, classifier fixed:
 - Goal: discriminate nominal vs. systematic samples
- Repeated till discriminator cannot distinguish nominal from systematic
- Tuning hyper-parameters
 - also tried feeding discriminator with last hidden layer of classifier

Adversarial training to reduce syst. uncertainties

- Figure of merit: binned AMS1 HiggsML, significance depending on discriminant shape and uncertainty
- Improved AMS1 (with large uncertainty), decreased AUC, as expected
- BDT (trained on nominal only) AMS1: 0.752, AUC: 0.789

With adversarial training

	AUC	AMS1
nominal	0.771 ± 0.004	0.993 ± 0.189
syst.	0.762 ± 0.005	

Without adversarial training

	AUC	AMS1
nominal	0.784 ± 0.001	0.942 ± 0.149
syst.	0.778 ± 0.001	

• Unclear that it helps

- Baseline BDTs: reconstruction and classification in two steps
- Replaced with LSTM with same high-level inputs ⇒ similar performance in single step
- Using low level features instead \Rightarrow not so good
- Introducing domain knowledge via parse trees:
 - recovers performance, using only low level features
 - with far fewer hyper-parameters
 ⇒ even if no performance improvement, could mean rethinking of analysis optimisation (e.g., no variable list dependence)
- Adversarial training with pivot technique to decrease impact of systematics: not clear it helps here
- To keep in mind: BDTs are not dead yet!

- Baseline BDTs: reconstruction and classification in two steps
- Replaced with LSTM with same high-level inputs \Rightarrow similar performance in single step
- Using low level features instead \Rightarrow not so good
- Introducing domain knowledge via parse trees:
 - recovers performance, using only low level features
 - with far fewer hyper-parameters
 ⇒ even if no performance improvement, could mean rethinking of analysis optimisation (e.g., no variable list dependence)
- Adversarial training with pivot technique to decrease impact of systematics: not clear it helps here
- To keep in mind: BDTs are not dead yet!
- Note about collaboration with ML experts: think hard about publication policy beforehand