

WORKSHOP ML IN2P3/IRFU

APPLICATION OF BAYESIAN CONVOLUTIONAL NEURAL NETWORK TO SPECTRAL IDENTIFICATION OF RADIONUCLIDES FOR NUCLEAR MONITORING

<u>DANIEL Geoffrey^{1,2}</u>, LIMOUSIN Olivier¹, MAIER Daniel¹, CERAUDO Francesco¹, MEURIS Aline¹

¹AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité ²École des Ponts ParisTech

www.cea.fr

January 23rd 2020

Nuclear safety monitoring:

- Decomissionning and dismantling
- Post-accidental scenes

Nuclear security: radiation portal monitor

Characterization of radiological scenes

- → Identification of the radionuclides in the scene
- → Proportion of each identified radionuclide

YOSHIKAZU TSUNO / POOL / AFP

Fukushima accident

CALISTE DETECTOR

CdTe semi-conductor crystal

Miniature pixelated spectro-imager

Works at **nearly room temperature**: high performance at -15°C **Low power consumption**: 200 mW

First developments for astrophysical application
 → STIX: Spectrometer Telescope Imaging X-rays
 Observation of Bremstrahlung from accelerated electrons near the Sun

Different versions of Caliste: Caliste-SO, Caliste-HD, Caliste-O...

geoffrey.daniel@cea.fr Caliste Family

From space applications to industrial applications:
→ Medical application: breast tumor cells detection
→ Nuclear safety application

CALISTE-HD - 256 pixels 625 µm pitch, thick 1 mm / 400V / -4°C

CALISTE HD

Pixelated detector 16 x 16 pixels 625 μm pixel pitch 1 mm thickness Surface: 1 cm² Other versions available

Imaging: Coded mask and Compton localisation

High energy range: from 2 keV to 1 MeV

High energy resolution

670 eV FWHM at 60 keV (1,1 %) 4,1 keV FWHM at 662 keV (0,62 %)

Spectroscopy: Radioactive sources identification

WIX-HD Camera **Mass: 1 kg**

OUR PROBLEM: SPECTRAL IDENTIFICATION

Input : Calibrated event list

	FRAME					X	Y	TYPE	ENERGY
Select	11	18	1B	1D	18	11	11	11	1D
All									
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	0	1	0	0.00000000000E+000	128	0	8	1	9.794309200000E+001
2	1	1	0	3.062956094742E+000	145	1	9	1	9.333808000000E+001
3	2	1	0	3.107777595520E+000	126	14	7	1	5.661259000000E+001
4	3	1	0	3.311278343201E+000	176	0	11	1	1.204386400000E+002
5	4	1	0	4.261723756790E+000	117	5	7	1	5.908343000000E+001
6	5	1	0	4.685714244843E+000	155	11	9	1	3.126330300000E+001
7	6	1	0	7.426927089691E+000	134	6	8	1	2.661225810000E+002
8	7	2	0	7.764491081238E+000	242	2	15	255	1.749924320000E+002
9	8	2	1	7.764491081238E+000	243	3	15	255	2.266542400000E+001
10	9	1	0	8.099779129028E+000	226	2	14	1	2.673193900000E+001
11	10	2	0	8.122672319412E+000	119	7	7	255	3.066022800000E+001
12	11	2	1	8.122672319412E+000	135	7	8	255	1.780166800000E+001
13	12	1	0	8.208755016327E+000	252	12	15	1	4.416408700000E+001
14	13	1	0	8.331153392792E+000	254	14	15	1	7.991901300000E+001
15	14	1	0	8.772984504700E+000	47	15	2	1	1.588442560000E+002
16	15	1	0	9.839590549469E+000	59	11	3	1	2.487148740000E+002
17	16	1	0	9.900824785233E+000	191	15	11	1	2.493642300000E+001
18	17	1	0	1.208127880096E+001	239	15	14	1	6.909980000000E+001
19	18	1	0	1.288081645966E+001	10	10	0	1	2.669001630000E+002
20	19	1	0	1.323039579391E+001	97	1	6	1	1.040922665000E+003
21	20	1	0	1.323042392731E+001	97	1	6	1	5.778931210000E+002
22	21	1	0	1.323045206070E+001	97	1	6	1	1.885572170000E+002
23	22	1	0	1.470239663124E+001	120	8	7	1	1.665020800000E+001
24	23	1	0	1.472033309937E+001	77	13	4	1	7.437592800000E+001
25	24	1	0	1.529405093193E+001	52	4	3	1	8.464667200000E+001
26	25	1	0	1.603019905090E+001	217	9	13	1	5.825263600000E+001
27	26	1	0	1.623439192772E+001	169	9	10	1	3.984854400000E+001
28	27	1	0	1.637744331360E+001	202	10	12	1	5.378394600000E+001
29	28	1	0	1.652689838409E+001	48	0	3	1	3.205725600000E+001

Outputs

Which **radioelements**? → Classification

In which **proportions**? → Regression

With uncertainties?

Some constraints:

- Real-time computation
- Identification for low-statistics of photon
- Independent on operational conditions (temperature, high-voltage... → impact on calibration)
- Not sensitive to environmental conditions (presence of absorbing materials or diffusing materials)

Input

Vector of counts \rightarrow Spectrum

Vector of counts \rightarrow Spectrum

23RD-JANUARY-2020

PATENTED, N°072124 FR EPR/PAS

PIPELINE TO SOLVE OUR PROBLEM

Use of **synthetic** data:

- Sources we do not have in lab
- Control the environment (put absorbing/diffusing materials)
- Voluntary decalibration → operational conditions
- Mixture creation (control the proportions)
- Physical model of the detector is required

Detailed Geant4 model

- Photoelectric absorption: total absorption of the energy of the photon (+ fluorescence)
- Compton diffusion: partial energy deposition and diffusion of the photon
- Modelisation of direct environment: multiple Compton scattering

Detector response modelisation

- Statiscal fluctuations of electrons/holes pair creation
- Charge loss modelisation (3D)
- Electronic noise

PATENTED, N°072124 FR EPR/PAS

CONVOLUTIONAL NEURAL NETWORK

Network creation:

- \rightarrow Dedicated architecture
- → Methodological: simple network then complexification, monitoring of performance (error rate) until performance did not improve
- → Cost function: binary cross-entropy (classification), MSE (proportion)

One identification network for each radio-element:

- → Use separated networks for each radio-element: characteristics extraction more efficient
- → Better performances on synthetic learning

One network to evaluate proportions for each radioelement:

- → Use separated networks for identification and evaluation of proportions
- → Discriminate presence or absence of sources with small proportions

PATENTED, N°072124 FR EPR/PAS

CONVOLUTIONAL NEURAL NETWORK

geoffrey.daniel@cea.fr

PERFORMANCE

Precision: False positive influence **Recall**: False negative influence **Accuracy**: Right identification rate

Accuracy:

- > 80 % with more than 200 photons
- > 90 % with at least 1000 photons
- > 95 % with at least some thousands of photons
- Similar performance for other radionuclides: ²⁴¹Am, ¹³³Ba, ⁵⁷Co, ¹⁵²Eu, ²²Na

Test on real data of mixtures with **random** decalibration

Idea: bayesian neural network

Weights learned are not fixed: we want to learn a **distribution** $W \sim \mathcal{N}(\mu, \sigma) \rightarrow$ Prediction *Y* is a **distribution** In practice: really complex to implement

Approximation by **dropout**: random extinction of the neurons \rightarrow Different tests on the same example, different answers

EXAMPLE: VIDEO

23RD-JANUARY-2020

EXAMPLE: VIDEO

- Identification and proportion determination of radioelements
 - Performed thanks to **Deep learning** algorithms
 - Training on synthetic data sets
- Uncertainties on the predictions
- Real-time measurements processing and low-statistics acquisition
- Not sensitive to decalibration

And now:

- **More sources** in the library (but still limited for the test set)
- Embedded implementation in FPGA
- Evaluation and qualification campaigns in different environments → Adaptation of the CNN architecture to the situation (more complex environment, deeper architecture)

Thank you!

[1] Second generation of portable gamma camera based on Caliste CdTe hybrid technology, D. Maier et al., NIM-A (2017)

[2] Caliste HD: A new fine pitch Cd(Zn)Te imaging spectrometer from 2 keV up to 1 MeV, A. Meuris et al., IEEE-NSS (2011)

[3] *A Review on Deep Convolutional Neural Network,* N. Aloysius, M. Geetha, International Conference on Communication and Signal Processing (2017)

[4] Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Y. Gal,Z. Ghahramani, Proceedings of the 33 rd International Conference on Machine Learning (2016)

GLOBAL PERFORMANCE

EXAMPLE: VIDEO 1

