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CONTEXT

Nuclear safety monitoring:

• Decomissionning and dismantling

• Post-accidental scenes

Nuclear security: radiation portal monitor

Characterization of radiological scenes

 Identification of the radionuclides in 

the scene

 Proportion of each identified 

radionuclide

Fukushima accident

YOSHIKAZU TSUNO / POOL / AFP
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CALISTE DETECTOR
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241Am Spectrum

Caliste Family

CdTe semi-conductor crystal

First developments for astrophysical application

 STIX: Spectrometer Telescope Imaging X-rays

Observation of Bremstrahlung from

accelerated electrons near the Sun

Miniature pixelated spectro-imager

Different versions of Caliste: Caliste-SO, Caliste-HD, Caliste-O…

From space applications to industrial applications:

 Medical application: breast tumor cells detection

 Nuclear safety application

Works at nearly room temperature: high performance at -15°C

Low power consumption: 200 mW
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Pixelated detector 16 x 16 pixels

625 μm pixel pitch

1 mm thickness

Surface: 1 cm²

Other versions available

Imaging: Coded mask and Compton localisation

High energy range: from 2 keV to 1 MeV

High energy resolution

670 eV  FWHM at 60 keV (1,1 %)

4,1 keV FWHM at 662 keV (0,62 %)

Spectroscopy: Radioactive sources identification
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CALISTE HD

Caliste-HD (CEA Irfu)

WIX-HD Camera

Mass: 1 kg
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OUR PROBLEM: SPECTRAL IDENTIFICATION

Which radioelements?  Classification

Input : Calibrated event list

In which proportions?  Regression

With uncertainties?
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Some constraints:

• Real-time computation

• Identification for low-statistics of photon

• Independent on operational conditions (temperature, high-

voltage…  impact on calibration)

• Not sensitive to environmental conditions (presence of 

absorbing materials or diffusing materials)

Outputs
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DATA TRANSFORMATION

Vector of counts  Spectrum
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Input

Calibrated event list
0 25 100 50 12 …. 4 0 0 0

Histogram of 

measured

energies

Classical way for 

these studies

Choices: 

binning, range, 

single events, 

sum spectrum of 

all pixels

Normalization

Log-normalization, 

max = 1

Input of ML 

algorithm
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DATA TRANSFORMATION

Vector of counts  Spectrum
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Input

Calibrated event list
0 25 100 50 12 …. 4 0 0 0

Histogram of 

measured

energies

Classical way for 

these studies

Choices: 

binning, range, 

single events, 

sum spectrum of 

all pixels

Normalization

Log-normalization, 

max = 1

Input of ML 

algorithm

Output

List of sources: 137Cs, 57Co

Proportions of the detected

photons: 137Cs: 30%, 57Co: 70%

Mathematical

representation

241Am 133Ba 57Co 137Cs 152Eu 22Na

0 0 1 1 0 0

0 0 0,7 0,3 0 0

Output of ML 

algorithm

Convolutional Neural 

Network
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PIPELINE TO SOLVE OUR PROBLEM
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Use of synthetic data:
• Sources we do not have in lab

• Control the environment (put absorbing/diffusing materials)

• Voluntary decalibration operational conditions

• Mixture creation (control the proportions)

• Physical model of the detector is required

Test ?

Cat

Cat

!
Learning

PATENTED, N°072124 FR EPR/PAS
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SPECTRUM SIMULATION: CREATION OF THE TRAINING SET

Detailed Geant4 model
• Photoelectric absorption: total absorption of the energy of the photon 

(+ fluorescence)

• Compton diffusion: partial energy deposition and diffusion of the photon

• Modelisation of direct environment: multiple Compton scattering

Detector response modelisation
• Statiscal fluctuations of electrons/holes pair creation

• Charge loss modelisation (3D)

• Electronic noise
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Source

Detector 

Environment

Compton

Compton

Compton

Photoelectric effect
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CONVOLUTIONAL NEURAL NETWORK
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One identification network for 

each radio-element:

 Use separated networks for 

each radio-element: 

characteristics extraction 

more efficient

 Better performances on 

synthetic learning

One network to evaluate

proportions for each radio-

element:

 Use separated networks for 

identification and evaluation

of proportions

 Discriminate presence or 

absence of sources with

small proportions

Network creation:

 Dedicated architecture

 Methodological: simple network then complexification, monitoring of 

performance (error rate) until performance did not improve

 Cost function: binary cross-entropy (classification), MSE (proportion)

Convolution part:

Characteristics

extraction

Pooling: 

 Dimension reduction

 Search for more 

global features

Fully connected: 

Identification

PATENTED, N°072124 FR EPR/PAS
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Input Spectrum

Convolution part:

Characteristics

extraction

Perceptron

Identification
Cs137!Normalization

CONVOLUTIONAL NEURAL NETWORK

23RD-JANUARY-2020

PATENTED, N°072124 FR EPR/PAS

Neural network



12geoffrey.daniel@cea.fr

PERFORMANCE

Precision: False positive influence

Recall: False negative influence

Accuracy: Right identification rate

Accuracy:

• > 80 % with more than 200 photons

• > 90 % with at least 1000 photons

• > 95 % with at least some thousands

of photons

• Similar performance for other

radionuclides: 241Am, 133Ba, 57Co, 
152Eu, 22Na

Test on real data of mixtures with random

decalibration
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HOW TO MEASURE UNCERTAINTY?

Idea: bayesian neural network

Weights learned are not fixed: we want to learn a distribution 𝑊~𝒩 𝜇, 𝜎  Prediction 𝑌 is a distribution

In practice: really complex to implement

Approximation by dropout: random extinction of the neurons  Different tests on the same example, different answers

Very low uncertainty Low uncertainty

Very high uncertainty
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EXAMPLE: VIDEO
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EXAMPLE: VIDEO
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CONCLUSION AND OUTLOOKS

• Identification and proportion determination of radioelements

• Performed thanks to Deep learning algorithms

• Training on synthetic data sets

• Uncertainties on the predictions

• Real-time measurements processing and low-statistics acquisition

• Not sensitive to decalibration

And now:

• More sources in the library (but still limited for the test set)

• Embedded implementation in FPGA 

• Evaluation and qualification campaigns in different environments  Adaptation of the CNN 

architecture to the situation (more complex environment, deeper architecture)
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Thank you!
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GLOBAL PERFORMANCE
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EXAMPLE: VIDEO 1
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