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Instrumental context

Euclid ESA satellite

15 000 sq. deg.

higher resolution than ground telescopes
3 instruments — visible + near-IR imaging

launched end of 2022
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Galaxy blending
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courtesy H. Bretonniére



Galaxy blending

galaxies are "transparent”
=> no obscuration

measuring flux and shape when
galaxies overlap is tricky

in our case a pixel can refer to
several objects





https://github.com/aboucaud/candels-blender

B I en d e d g d | axy se g me ntati on https://arxiv.org/abs/1905.01324
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o Up-Conv2D
° Maxpooling

#&  (Conv2D, Relu, Dropout ) x2
= Copy and Concatenate

- Conv1x1



https://arxiv.org/abs/1905.01324

Gal axy segme ntation with UNet https://arxiv.org/abs/1905.01324
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PREDICTED
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https://arxiv.org/abs/1905.01324

Flux estimation of blended galaxies

https://arxiv.org/abs/1905.01324
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performance is much better than
traditional astro detection algorithms
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https://arxiv.org/abs/1905.01324

Could we go from a fully deterministic network..

Output
segmentation
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Thesis of Hubert Bretonniere

"Develop and implement deep learning-based image
processing algorithms for the morphology of galaxies
Euclid satellite"

hubert.bretonniere@ias.u-psud.fr

co-supervision astronomer — software engineer

started last october


mailto:hubert.bretonniere@ias.u-psud.fr

Probabilistic U-Net

Re-implementation of the model described in “A Probabilistic U-Net for Segmentation of Ambiguous Images' (paper @
NeurlPS 2018).

This was also a spotlight presentation at NeurlPS and a short video on the paper of similar content can be found here
(4min).

The architecture of the Probabilistic U-Net is depicted below: subfigure a) shows sampling and b) the training setup:
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https://github.com/SimonKohl/probabilistic unet



https://github.com/SimonKohl/probabilistic_unet

Deterministic U-Net
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https://arxiv.ora/abs/1806.05034 3



https://arxiv.org/abs/1806.05034

Probabilistic U-Net
Sampling

sample z..z..2..

Latent Space

U-Net

https://arxiv.org/abs/1806.05034 4



https://arxiv.org/abs/1806.05034

Probabilistic U-Net
Sampling
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https://arxiv.org/abs/1806.05034 4



https://arxiv.org/abs/1806.05034

Probabilistic U-Net
Sampling

Sample z, .z2,.2.,

Latent Space

https://arxiv.orq/abs/1806.05034 4



https://arxiv.org/abs/1806.05034

TensorFlow Probability

Build model. X Do inference.

: Q J
AR Distributions Markov chain

. Monte Carlo
‘l, Bijectors
Variational

Inference

Layers / Losses

Edward? Optimizers



https://www.youtube.com/watch?v=BrwKURU-wpk
https://www.tensorflow.org/probability

Probabilistic segmentation

aim at predicting a probability of
blending between 2+ galaxies

TRVE
SEGMENTATION
can be applied to large images
ability to propose an absence of I
overlap —~  PREDICTED
SEGMENTATIONS

uses TensorFlow Probability
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courtesy H. Bretonniere



|Predicted Samples’ Proba SegMap  True SegMap Blended Images

. . . - . . . . courtesy H. Bretonniere
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Conclusions

=>» deterministic networks tend to hide the model uncertainty

=>» modifying your models to output probability distributions
is quite straightforward

€ TensorFlow => TensorFlow Probability at least

€ other tools exist (Pyro w/ PyTorch, PyMC3, etc..)

=> such step might be necessary in order to use your ML model to
perform Bayesian inference



ANR — “AstroDeep”
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Astro experts
weak lensing
signal processing

image processing
pipelines
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omputer scientists

Markov models, random
processes, bayesian

machine learning

neural networks

networks...

v

Recently got funding
for the next 4 years

3 postdocs
1 PhD student

travel and computing

23



Workshop in march

3-day workshop including
talks, round tables and hands-on

focus on Bayesian inference w/ NN

advanced tutorials given by
TFProbability developers

deadline for application: feb 2

https://indico.in2p3.fr/event/19458

Bayesian neural nets, variational inference,
‘MCMC, TensorFlow Probability

BAYESIAN DEEP lEARNING

FOR

~ COSMOLOGY AND
GRAVITATIONAL WAVES.

PARIS CENTRE FOR COSMOLOGICAL PHYSICS WORKSHOP SERIES
MARCH 4-6,-2020 .

AstroParticule & Cosmologie - Université de Paris (France)

Lectures, round tables, hands-on sessions

Abstract submission deadline: February 2nd 2020
https//indico.in2p3.fr/e/bayesdeep-cosmogw2020



https://indico.in2p3.fr/event/19458

Fondamentaux du machine learning et

Formation CNRS

du deep learning en Python

with Sylvain Caillou (LIMSI)
e 3-day course with tutorials in the afternoon (50%)

e first 2 days focused on traditional machine learning
(terminology, main algorithms, model comparison, etc.)

e |ast day focused on neural networks and deep learning

Registration starting on Feb 15, course last week of May in Villejuif (Paris)



