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« Using a term like 
nonlinear science 
is like referring 
to the bulk of zoology 
as the study 
of non-elephant animals »

— Stanislaw Ulam
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Non-linear problems, SVM and 
the kernel trick



5

Kitchen 
Sinks

Original paper: https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf

Popularization: http://www.argmin.net/2017/12/05/kitchen-sinks/

https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
http://www.argmin.net/2017/12/05/kitchen-sinks/
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Optical Processing Unit

OPU in
OPU out

https://docs.lighton.ai/notes/opu.html 

https://docs.lighton.ai/notes/opu.html
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Optical Processing Unit ML workflow

https://docs.lighton.ai/notes/opu.html 

Binarize
data

OPU in
OPU out

Linear
ML algo

https://docs.lighton.ai/notes/opu.html
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Large Hadron Collider
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(protons)
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mm

1 mm
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Particle creation

Hadrons
(protons)

Partons

Jet



11

Pile-up
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Detection

Transverse slice through one segment of the CMS detector 
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(HL-)LHC: a few numbers

● ~10 PB of data per year
● Pile-up: 50  200→
● 10 K particles / collision
● 100 K 3D points / collision
● 3-20 hits per particle
● Looking for innovative data analysis 

on LHC next generation
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Reduced 2D dataset
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Binary encoding

~ 2 times less tracker 
pixels than DMD pixels
→ all pixels represented 
on DMD at once

Each layer at most one hit
we change bool value 
at each hit seen 
→ ~ 50 % of DMD lit
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Estimation of initial angle

(5K) random features Ground truth angle

Uncertainty
~ 0.25 rad 
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Estimation of (inverse) momentum

Uncertainty
~ 2.5 10-4 GeV-1 

Inverse momentum (~curvature)
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Binary 
encoding

First layer Second layer

binarisation

DMD

See echo state networks in Davide Faranda talk yesterday
https://indico.in2p3.fr/event/20187/contributions/78673/
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Layers 7/8 
hit number
discrepancy
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Oracle on number of hits (3)

1 test (unseen) event
(weights from training)

Predicted 
L8 angle

True L8 
angle

(3) last layer hit position
X (20K) events



22

Standard deviation wrt hit number
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Standard deviation wrt hit number
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Event classification case study

● Raw calorimeter 
readings binned into 
64X64 images 

● Pixel value = energy at 
corresponding location 

● Each image = data of 
whole calorimeter 
(no cropping)

● Bottom row= 
normalized distribution 
of whole dataset

Background (QCD) Signal (SUSY)

η

ɸ
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Supervised ML on Calo data

Calorimeter image
+ ground truth

Signal / background
separation

Supervised
ML algorithm
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Beyond feature engineering

Calorimeter image
+ ground truth

Signal / background
separation

Supervised
ML algorithm

Feature engineering 
Classical ML (BDT…)

Raw features
Modern ML (CNN...)

See Joao Coelho talk from yesterday : 
Calorimeter reconstruction with computer vision at LHCb
https://indico.in2p3.fr/event/20187/contributions/78787/

https://indico.in2p3.fr/event/20187/contributions/78787/
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CNN results

ROC curve comparison of different CNN implementations
with physics selections and shallow classifiers ( arXiv:1711.03573 )

https://arxiv.org/pdf/1711.03573.pdf
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OPU competitive with CNN ?

Calorimeter image
+ ground truth

Signal / background
separation

Supervised
ML algorithm

Feature engineering 
Classical ML (BDT…)

Raw features
Modern ML :
- CNN
- OPU ?
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Modelization

● Intensity-based binning (3 bits per pixel)
● Linear regression: single output node neural network.
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Comparison with CNN
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Optimal performance 

● Optimal number of features increases 
with number of training images

● Even low number of images allows 
high accuracy
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OPU utility

● NN require a large amount of training data
● OPU + BDTs scalable even when Nevents  N≃ pixels
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Conclusions
● OPU provides physical device to reduce dimensionality / training time

● Use for detector tracking / calorimetry?

● Casting a Tracking problem for OPU is hard ; nonetheless estimations of

▪ Single particle parameters (angle, inverse momentum)

▪ Number of particles, position projected on next layer

▪ OPU « makes sense » without matching traditional methods

● Calorimetry 

▪ Faster training than CNNs, far less training data, more robust

▪ Performance not comparable to CNNs but fairly good even when Nfeatures N≃ pixels

▪ BDT can combine handcrafted variables with regression output from OPU 
random features

▪ Outlook: extend to similar problems with finer granularity (arXiv:1807.00083)



 
 

Backup
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The TrackML challenge: 
connect the dots
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How to proceed?

● Track following? No simple geometry of 
successive layers

● Compress the hits seen in electronics?
▪ 2B electronic channels (!)  1M OPU bits→
▪ Test with layered tSVD, autoencoders…

didn’t give anything interesting
● Use a more manageable dataset

▪ Simplified dataset from RAMP challenge
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Reservoir computing
Inspired by arxiv:1907.00657, J. Dong and al. :
«  Optical Reservoir Computing using multiple 
light scattering for chaotic systems prediction »
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How bad 
is it ?
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Encoding Scheme

Pixel (energy) value encoding

x = 0 000

x>0 and x<=.00031528  001

x>3.1528*10-4 and 
x<=9.1565*10-4

011

x>9.1565*10-4 111

Distribution of energy (Excluding zeros)

40
The intensity based binning performed much better then auto-encoders
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Predictions using OPU
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Estimate next layer hits number 

(10K) random features
X (10K) events

(1) last layer hit number
X (10K) events
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