

IN2P3/IRFU Machine Learning workshop, 22-23 January 2020

Waveform Processing using Artificial Neural Networks

G. Baulieu, L. Ducroux, J. Dudouet, X. Fabian, O. Stézowski, K. Zougagh (stage M1)

Outline

Developments in:

Developments in:

Developments in:

Developments in:

Developments in:

Developments in:

Experiment NEDA + AGATA in coincidence [GANIL 2018]

Inputs used for the Discrimination: the waveform - the amplitude - the time of flight

Common parametrisation of the signal

$$s(t) = \mathbf{A} \left[\exp(-t/\mathbf{td1}) - \exp(-t/\mathbf{tr}) + \mathbf{R}^*(\exp(-t/\mathbf{td2}) - \exp(-t/\mathbf{tr})) \right] \text{ if } t > \mathbf{T0}$$

A amplitude = energy td1, td2, tr independent of γ and n R depends of the type of the particle

To relies on how the signal is captured

Three different Artificial Neural Network architectures tested: MLP / LSTM / CNN

R&D NEDA

discrimination for low energy better that classical methods * Implementation with ROOT - mono thread / CPU

→ Tensorflow / multi CPU / GPU

Number of parameters

MLP: 814, LSTM: 10502, CNN: 7042

* Ronchi et al., NIMA 610 (2009) 534-539

Training of the networks, Keras, python interface (Tensorflow board), recent GPU card

Typical time: 0,5 to 1 hour

To build the training data set, combinaisons of 2D cuts (uniformly distributed)

+ selection of clean* waveforms

Relu + softmax + Cross entropy loss function

Optimizers:

- Stochastic Gradient Descent
- ADAM LSTM

Inference Tensorflow, C++ interface

⇒ Batch of signals for efficiency

	MLP		CI	NN	LSTM	
Batch Size	CPU	GPU	CPU	GPU	CPU	GPU
5000	$2\mu s$	$1\mu s$	$10\mu s$	$3\mu s$	$50\mu s$	$13\mu s$
20000	$1\mu s$	$1\mu s$	$12\mu s$	$2\mu s$	$60 \mu s$	$10\mu s$
80000	$1\mu s$	$1\mu s$	$12\mu s$	$4\mu s$	$75\mu s$	$9\mu s$

Typical time for one signal

Distribution of the output value of the three different networks

Continuous parameter to play with growing cut in a multi-dimensional space!

Mislabel probability and impact on statistics in good events

Interpolation capabilities

We had the feeling that LSTM seems a 'better' classifier. Why should it be? Other studies using synthetic signals generated from

 $s(t) = \mathbf{A} \left[\exp(-t/t\mathbf{d1}) - \exp(-t/t\mathbf{r}) + \mathbf{R}^*(\exp(-t/t\mathbf{d2}) - \exp(-t/t\mathbf{r})) \right] \text{ if } t > \mathbf{T0}$

Training with Gaussian distribution $\sigma = 2$ of **T0**, other parameters are constants

Test with Gaussian distribution $\sigma = 20$ of **T0**

LSTM the most robuste!

Neural network output value

Truncated signals give the same output ...

Feature extraction ≡ calibration really does matter!

Signals and auto encoders

Conclusions / Perspectives

Our first steps in using Machine Learning for data processing, 3 ANN architectures studied

- ➤ MLP has run online in CPU farms!
- ightharpoonup AGATA to qualify/quantify the γ /n discrimination in NEDA
- ➤ LSTM has some advantages, less sensitive to bad alignment of modules (time)
- ➤ Auto encoders into the game for compression / de-noising

- ➤ Move to production -online- for data compression / de-noising / anomalies
- ➤ ANNs at lower stages ? FPGA?

Our future steps in using Machine Learning for data processing - AGATA

- ➤ Much more complex : Pulse Shape Analysis

 regression + Tracking (cluster stage)
- ➤ No model for the shapes of the pulses. It relies on complex simulations / scanning

Classification & Mislabel

Machine Learning on signals

Study 2: Pileup identification

Error as fonction of the time between signals

Confusion matrix

	Name	Smoothed	Value	Step	Time	Relative
ep O	CNN 2020-01-08 17:41:37.482816	0.9828	0.9828	350.0	Wed Jan 8, 18:44:34	1h 2m 44s
	LSTM 2020-01-08 18:44:50.793384	0.9861	0.9861	130.0	Wed Jan 8, 19:14:56	29m 10s
ep n	MLP 2020-01-08 17:07:32.840584	0.9802	0.9802	270.0	Wed Jan 8, 17:41:27	33m 46s