

Training of a neural network to model the MYRRHA LEBT for reliability improvements

Presented by Mathieu Debongnie

PhD Student ACS/LPSC

Introduction

- The MYRRHA project
- Low energy beam transport line

Machine learning

- Training databases
- Network performances
- Transferability

Conclusion & Prospects

2

In2p3

MYRRHA

High power proton beam (up to 2.4 MW)

Proton energy	600 MeV	
Peak beam current	0.1 to 4.0 mA	
Repetition rate	1 to 250 Hz	
Beam duty cycle	10 ⁻⁴ to 1	
Beam power stability	< \pm 2% on a time scale of 100ms	
Beam footprint on reactor window	Circular Ø85mm	
Beam footprint stability	< \pm 10% on a time scale of 1s	
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period	
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day	
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited	

Extreme reliability

Low Energy Beam Transport Line

7 controls:

- Solenoids x2
- Steerers x4
- Collimator x1

LEBT at LPSC, Grenoble (2017)

22/01/2019

Beam current transmitted through the LEBT as a function of the solenoids focusing (current in the coils)

- $I_{Sol1}, I_{Sol2} \in [50, 110] \text{ A}, stepsize = 2 \text{ A}$
- $I_{source} = 8 \text{ mA}$
- $P = 1.2 \times 10^{-6}$ mbar

• $I_{Steerers} = 0 \text{ A}$

- $I_{Sol1}, I_{Sol2} \in [50, 110] \text{ A}, stepsize = 2 \text{ A}$
- $I_{source} = 8 \text{ mA}$
- $P = 1.9 \times 10^{-5}$ mbar (Ar injected for SC compensation)
- $I_{Steer2H} = -0.5 \text{ A}, I_{Steer2V} = 0.75 \text{ A}$

22/01/2019

Transmission maps: Steerers

Beam current transmitted through the LEBT as a function of the current in the steerers

- $I_{Steer2V}, I_{Steer2H} \in [-3, 3] \text{ A}, stepsize = 0.5 \text{ A}$
- $I_{source} = 8 \text{ mA}$
- $P = 1.9 \times 10^{-5}$ mbar (Ar injected for SC compensation)
- $I_{Sol1} = 65.6 \text{ A}, I_{Sol2} = 77.9 \text{ A}$
- Collimator extension = 0 mm

- $I_{Steer2V}, I_{Steer2H} \in [-3, 3] \text{ A}, stepsize = 0.5 \text{ A}$
- $I_{source} = 8 \text{ mA}$
- $P = 1.9 \times 10^{-5}$ mbar (Ar injected for SC compensation)
- $I_{Sol1} = 65.6 \text{ A}, I_{Sol2} = 77.9 \text{ A}$

22/01/2019

• Objectives

Fast control and tuning for different linac beam modes (peak current, duty cycle)

• How ?

Training of an experimental model using supervised learning

ERATORS AN

Neural Network

Can fit any continuous function

22/01/2019

ERATORS A

MYRRHA (SCK*CEN, Belgium)

• ~20000 measurements

10

C si rontières

In2p3

Slices at different slits extensions

Input				Desired output
Current in steerers x4 [A]	Current in solenoids x2 [A]	Collimator opening x1 [m]	Pressure gauge x3 [bar]	Current in FC2 [A]

YOGENIC SYSTEMS

Model output

Execution time $\approx 1 \text{ ms}$

22/01/2019

CRYOGENIC SYSTEMS

Model output

ERATORS A

6

5

4

l_{FC2} [mA] ω

2

1

0

0

Model output : Identified issues & improvements

30

Collimators extension [mm]

How to improve ?

More training data !

Simulation or Measurements

10

20

ML for MYRRHA LEBT reliability improvements, Lyon, France - M. Debongnie

40

50

NIC SYSTEMS

22/01/2019

22/01/2019

• Machine Learning model

- Training of an experimental model is possible
- Improvement to be made
 - Optimize training: solve overfit issues
 - Optimize neural network (minimize training/execution time): #neurons, #layers, ...
- Prospects
 - Training of a neural network controller
 - From desired current and RFQ transmission → solenoid settings
 - Applications to SC cavities fast fault-recovery

рахмат

22/01/2019

LERATORS AND

- Execution time ${\sim}10~\mu s$

$$RMSE = \sqrt{\frac{\sum_{y_i} (y_i^{true} - y_i^{model})^2}{N_{y_i}}}$$

• Quality evaluation: RMS error

	MYRRHA	IPHI		
Outputs	Beam current [mA]	Beam current [mA]	RFQ transmission [%]	
RMSE on training dataset	0.09	0.66	1.25	
RMSE on validation dataset	0.10	0.79	1.62	
RMSE on test dataset	0.10	0.81	1.65	
RMSE on whole dataset	0.09	0.72	1.42	

LERATORS AND

• ~8000 measurements

Input			Desired output	
Current in solenoids [A]		Collimator opening [m]	Beam current output [mA]	Transmission [/]
I _{sol1}	I _{sol2}	r _{coll}	I _{Beam,out}	T_{RFQ}

Comparison Grenoble-LLN

 \succ I_{steererV} = -2 A

ML for MYRRHA LEBT reliability improvements, Lyon, France - M. Debongnie

20

In2p3