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Need for fast shower simulation: Monte Carlo Production

Physics Analysis

Successful Physics program in ATLAS depends on the 
availability of  high statistics Monte Carlo simulated 

events 

Geant4 requires significant resources with ~75% 
spent in shower simulation i.e. Calorimeter simulation

The increased pileup at HL-LHC will also increase 
the CPU requirement for the same number of  hard 

scattered events 

Imperative to develop fast shower simulations compared to Geant4 
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Motivation

Simulate showers 100-1000x faster than Geant4 

Less human time intensive, higher accuracy than current fast 
simulation methods 

Have it run inside ATLAS C++ software and be less resource 
hungry than current fast simulation methods 

Imperative to develop fast accurate shower simulations

unknown
T0 Processing Others MC Simulation

MC Reconstruction
Group Production

Data Processing

Analysis
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(a) Each dot represents one energy deposit from Geant4 and
the color of the dot encodes the energy. The absorber-gap

structure is clearly visible, where most of the energy is lost in
the absorber.
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(b) Discretized version of (a), in which energy depositions are
assigned to individual, discrete detector cells.

FIG. 1: The electromagnetic shower from one 10 GeV
electron event. The boundaries of the cells are shown,

projecting out the � segmentation.

and the hypothesized image from the current layer, I,
and learns a per-pixel attention weight W via a weighting
function !(I, I

0
) such that the pre-ReLU version of the

current layer is W � I + (1 � W ) � I
0
, where � is the

Hadamard product. This end-to-end trainable unit can
utilize information about the two layers to decide what
information to propagate through from the previous par-
ticle deposition. An alternative architectural choice that
includes a recurrent connection will be subject of future
studies.

Leaky Rectified Linear Units [57] are chosen as activa-
tion functions throughout the system, with the exception
of the output layers of G, in which we prefer Rectified
Linear Units [58] for the creation of sparse samples [19].

In the discriminator (shown in Fig. 5), the feature
space produced by each LAGAN-style output stream is

η
z

φ

FIG. 2: Three-dimensional representation of a 10 GeV e
+

incident perpendicular to the center of the detector.
Not-to-scale separation among the longitudinal layers is

added for visualization purposes.

FIG. 3: Two-dimensional, per-layer representation of the
same shower as in Fig. 2.

augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
Fig. 5 by the ‘features’ vector.

The discriminator is further customized with domain-
specific features to ensure fidelity of samples. Given
the importance of matching the requested energy E, D
directly calculates the empirical energy per layer Êi, i 2
{0, 1, 2}, as well as the total energy Êtot. Minibatch
discrimination is performed on this vector of per-layer
energies to ensure a proper distributional understanding.
We also add |E�Êtot| as a feature, as well as I{|E�Êtot|>"}
with " = 5 GeV – a binary, sub-differentiable feature which
encodes the tolerance for GAN-produced scatterings to
be incorrect in their reconstructed energy.

Further specifications of the exact hyper-parameter
and architectural choices as well as software versioning
constraints are available in the source code [60].

Two additional architectural modifications were tested
in order to build a particle-type conditioning system di-
rectly into the learning process. Neither the AC-GAN [43]
nor the conditional GAN [44] frameworks were able to
handle the substantial differences among the three particle

3

Generative Models for EM Shower Simulation

• CaloGAN showed that it is possible to simulate EM showers for a 
detector like ATLAS using GANs 

• Since then we’ve seen many GANs for particle physics 

• ATLAS calorimeter more complicated than CMS, strange 
geometry compared to high granularity future :major simulation 
bottleneck!
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CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer

Electromagnetic Calorimeters with Generative Adversarial Networks

Michela Paganini,1, 2, ⇤ Luke de Oliveira,2, † and Benjamin Nachman2, ‡
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The precise modeling of subatomic particle interactions and propagation through matter is
paramount for the advancement of nuclear and particle physics searches and precision measurements.
The most computationally expensive step in the simulation pipeline of a typical experiment at the
Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that
govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a
new fast simulation technique based on generative adversarial networks (GANs). We apply these
neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter,
and achieve speedup factors comparable to or better than existing full simulation techniques on
CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 105⇥). There are still challenges for achieving
precision across the entire phase space, but our solution can reproduce a variety of geometric shower
shape properties of photons, positrons and charged pions. This represents a significant stepping
stone toward a full neural network-based detector simulation that could save significant computing
time and enable many analyses now and in the future.

I. INTRODUCTION

The physics programs of all experiments based at the
LHC rely heavily on detailed simulation for all aspects
of event reconstruction and data analysis. Simulated
particle collisions, decays, and material interactions are
used to interpret the results of ongoing experiments and
estimate the performance of new ones, including detector
upgrades.

State-of-the-art simulations are able to precisely model
detector geometries and physical processes spanning dis-
tance scales as small as 10�20 m for the initial parton-
parton scattering, all the way to the material interactions
at meter length scales. These processes, which include
nuclear and atomic interactions, such as ionization, as
well as strong, weak, and electromagnetic processes, will
alter the state of incoming particles as they propagate
through and interact with layers of material in the vari-
ous detector components. Detection techniques such as
calorimetry exploit these physical interactions to detect
the presence and measure the energy of particles such as
photons, electrons and hadrons via their interactions with
hundreds of thousands of detector components. Upon
interaction with a calorimeter, a cascade (shower) of sec-
ondary particles is produced and their energy is collected
and transformed into electric signals.

Physics-based (full simulation) modeling of particle
showers in calorimeters (with Geant4 [1] as the state
of the art) is the most computationally demanding part
of the whole simulation process, and can take minutes
per event on modern, distributed high performance plat-
forms [2, 3]. The production of physics results is often

⇤ michela.paganini@yale.edu
† lukedeoliveira@lbl.gov
‡ bnachman@cern.ch

limited by the absence of adequate Monte Carlo (MC)
simulation, and the increase in luminosity at the LHC will
only exacerbate the problem. For example, the ATLAS
and CMS experiments at the high-luminosity phase of the
LHC (HL-LHC) will each see about 3 billion top quark
pair events [4–10]; for a MC statistical uncertainty that
is significantly below the data uncertainty, hundreds of
billion simulated events would be required. This is not
possible using full detector simulation techniques with
existing computing resources. Currently, full MC sim-
ulation occupies 50-70% of the experiments’ worldwide
computing resources, equivalent to billions of CPU hours
per year [11–13].

The relevance of the calorimeter simulation step has
sparked the development of approximate, fast simulation
solutions to mitigate its computational complexity. Fast
simulation techniques rely on parametrized showers [14–
16] for fluctuations, and look-up tables for low energy
interactions [17]. For many applications, these techniques
are sufficient. However, analyses that utilize the detailed
structure of showers for particle identification as well as
energy and direction calibration may not be able to rely
on these simplified approaches [18].

We introduce a Deep Learning model to enable high-
fidelity fast simulation of particle showers in electro-
magnetic calorimeters. Previous work [19] assessed the
viability of GAN-based simulation of jet-images [20] –
sparse, structured, 2D representations of jet fragmen-
tation analogous to a single-layer, idealized calorimeter
– and focused on providing architectural guidelines for
this regime. Neural network-based generation, including
GANs, Variational Auto-Encoders [21], and Adversarial
Auto-Encoders [22], have also been tested in other areas
of science, such as Cosmology [23, 24], Condensed Mat-
ter Physics [25], and Oncology [26]. The longitudinally
segmented calorimeter simulation addressed in this work
offers unique challenges due to the sparsity of hit cells,
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New approaches of fast simulation: FastCaloSimV2
Parametrization based approach following FastCaloSimV1

• PCA transformation to decorrelate energy deposit in 
each layer 

• Leading PCA component is used to divide the Geant4 
dataset into subsets 

• Each subset represents shower with similar feature    
• Longitudinal and lateral parametrization for each subset

G4 simulated
particles in

E-η grid

Total energy,
Energy fractions in

each layer

Principle Component
Analysis (PCA)
N components

1st PCA  to
divide

Geant4 dataset

Longitudinal
parametrization

Lateral
parametrization

strong correlation 
between layers!
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Longitudinal Shower Parametrization
FastCaloSimV2

Additional PCA transformation to further decorrelation

Multi-layer perceptron (MLP) for regression of  energy cumulants 

Parametrization of  discrete energy points, spline function for interpolation 

Geant4 datasets
divided via

1st PCA

additional PCA
for further

decorrelated
dataset

Total energy,
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Cumulative
distributions
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GAN research moving towards better quality images  

Generative Adversarial Networks

(BE)GAN seems to produce more attractive faces than in training dataset

(a) ALI [5] (64x64)

(b) Conditional PixelCNN [13] (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

see from this plot that the model converges quickly, just as was originally reported for EBGANs.
This seems to confirm the fast convergence property comes from pixel-wise losses.

4.5 Equilibrium for unbalanced networks

To test the robustness of the equilibrium balancing technique, we performed an experiment advan-
taging the discriminator over the generator, and vice versa. Figure 6 displays the results.

By maintaining the equilibrium the model remained stable and converged to meaningful results. The
image quality suffered as expected with low dimensionality of h due to the reduced capacity of the
discriminator. Surprisingly, reducing the dimensionality of z had relatively little effect on image
diversity or quality.

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7

https://arxiv.org/pdf/1703.10717.pdf
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.

Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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But probability densities are another thing

https://arxiv.org/pdf/1703.10717.pdf
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Wasserstein GAN with Gradient Penalty

iWasserstein GANs: 
Gradient Penalty on Critic
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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• Stable GAN training, no vanishing grads, no mode collapse
• Long training time
• Other GAN favours were tried

https://arxiv.org/abs/1704.00028
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position of the cells for practical reasons
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PubNote 2018: VAE and GAN

8

50k ‘epochs’, 7 hours training, 1 GPU 

100 epochs, 2 mins, CPU 

Training dataset:
• Single photon samples from 

Geant4
  • 88000 events
• 9 discrete energy points : {1, 

2, 4, 8, 16, 32, 65, 131, 262} 
GeV 

• 0.20 < |η| < 0.25  
• 4 electromagnetic calorimeter 

layers

Data preprocessing
• Negative energies set to 0

  • Mirror η < 0
 

https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
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Figure 2: Schematic representation of the architecture of the VAE used in this note. It is composed of two stacked
neural networks, each comprising of 4 hidden layers with decreasing/increasing number of units per layer, acting as
encoder and decoder respectively. The model uses exponential linear units (ELUs) [22] and Sigmoid function for
the output layer as activation functions. The implemented algorithm is conditioned on the energy of the incident
particle to generate showers corresponding to a specific energy.

are selected. The dimension of the rectangle for the middle layer is chosen to be 7 ⇥ 7 cells in ⌘ ⇥ �,
containing more than 99 % of the total energy deposited by a typical shower in this layer. The dimensions
of the remaining layers are chosen such that the spread in ⌘ and � of the middle layer rectangle is covered.
The dimensions for the presampler, front and back layer are 7 ⇥ 3, 56 ⇥ 3 and 4 ⇥ 7, respectively. In total
the energy deposits in 266 cells are considered. For training the neural networks, the energy values are
normalized to the energy of the incident particle.

All cells are selected with respect to the impact cell, defined as the cell in the middle layer closest to the
extrapolated position of the photon, taking into account two possible alignments of the back layer and four
possible alignments of the presampler and front layer with respect to the impact cell in the middle layer
when considering the simplified cuboid geometry. This is illustrated in Fig. 1. Throughout the note, the
raw values of the calorimeter cells’ ⌘ and � are used, i.e. not taking into account corrections accounting
for imperfections of the detector, such as sagging under its own weight, or misalignment.

4 Algorithms

The architecture of the studied neural networks, the objective functions used in the training, as well as the
tuning of the hyperparameters and their impact on the shower simulation are discussed in this section. A
general introduction to machine learning is given for example in Refs. [20, 21].

4.1 Variational Autoencoders

VAEs [8, 9] are a class of unsupervised learning algorithms combining deep learning with variational
Bayesian methods and can be used as generative models. The algorithm explored in this note is composed
of two stacked neural networks, each comprising of 4 hidden layers, acting as encoder and decoder
respectively. The architecture is illustrated in Fig. 2. The number of units per layer decreases for subsequent

5

(WGAN-GP, Improved WGAN-GP nightmare on Keras!)

VAE:

GAN:

Graeme Stewart (CERN), Aishik Ghosh, David Rousseau (LAL, Orsay), Kyle Cranmer 
(NYU), Stefan Gadatsch, Tobias Golling, Dalila Salamani (UniGe), Gilles Louppe (ULiège) 

Not an ideal training datasetFlat vector of 266 cells are the output of both generators

https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
https://arxiv.org/abs/1704.00028
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Figure 11: Average energy deposition in the cells of the individual calorimeter layers as a function of the distance
in ⌘ from the impact point of the particles for photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The chosen bin widths correspond to the cell widths in each of the layers. The energy
depositions from a full detector simulation (black markers) are shown as reference and compared to the ones of a
VAE (solid red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the statistical
uncertainty of the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. The showers simulated by Geant4 deposit on average
approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true photon energy in the presampler, front, middle and back
layer, respectively. The showers synthesized by the VAE (GAN) deposit on average approximately 0.6 % (0.8 %),
19.1 % (19.8 %), 77.6 % (78.1 %) and 0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and
back layer, respectively.
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Figure 11: Average energy deposition in the cells of the individual calorimeter layers as a function of the distance
in ⌘ from the impact point of the particles for photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The chosen bin widths correspond to the cell widths in each of the layers. The energy
depositions from a full detector simulation (black markers) are shown as reference and compared to the ones of a
VAE (solid red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the statistical
uncertainty of the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. The showers simulated by Geant4 deposit on average
approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true photon energy in the presampler, front, middle and back
layer, respectively. The showers synthesized by the VAE (GAN) deposit on average approximately 0.6 % (0.8 %),
19.1 % (19.8 %), 77.6 % (78.1 %) and 0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and
back layer, respectively.
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Figure 8: Reconstructed longitudinal shower center for photons with an energy of (a) 4 GeV, (b) 65 GeV and (c)
260 GeV in the range 0.20 < |⌘ | < 0.25. The shower depth for the full detector simulation (black markers) is shown
as reference and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error
bars and the hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples,
respectively. The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Shower Depth

https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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Bars = standard deviation not error

 Well known detector resolution: σE/E ~ 10% /√E

https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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η, φ, other distributions not so bad 
but for total energy… 

GAN gets the means but not the 
widths of the energies 

Critic can’t see the difference b/w 
real and fake images.

Tried training on single high energy point, 
Minibatch discrimination, various other tricks. No result.  

Bars = standard deviation not error

 Well known detector resolution: σE/E ~ 10% /√E

https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf


What is a good range of hyper-parameters to try anyway?

11

Gradient Penalty = 10

Standard Architecture with GP(weight=10) on 266 Cells which 
are the inputs to the Critic along with the conditional inputs

These are trained on a very small training set for quick tests, the actual results look better

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

Results were stable for usual GP values, ∈ (1,500)
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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What is a good range of hyper-parameters to try anyway?
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Energy gets better
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.

10

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1
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5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
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[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
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[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Mini-batch size 64, 1024
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Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads
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[D(x̃)] � E
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[D(x)] + � E
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[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
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[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
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[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation
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Cartesian coordinates.
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These are trained on a very small training set for quick tests, the actual results look better
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Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Kernel init. glorot_uniform [33], lecun_normal [47]
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Gradient penalty weight 0, 10, 20
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Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads
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[D(x̃)] � E
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The term E
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[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
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[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
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Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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“Train the Generator against a Critic of each type!”  
-Gilles Louppe (ATLAS ACE)
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New GAN Architecture
2 Critics 

Deeper Generator needed 

Trainable Swish activation for Generator  

Swish(x)=x⋅sigmoid(βx)

Input features = 1 + Conditional

Input features = 266 + ConditionalGP = 10

GP = 1e-8

72 desecrate conditional combinations + 2 continuous conditions, 
doesn’t even fit in one batch (64)
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.

1.3
ATLAS SiPulatiRn 3reliPinary
γ, 0.20 < |η| < 0.25
χ2/ndf= 400 (9A()

Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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energies in each cell 

It should be easy to have it 
correct ? :  NO !  

Tried training on single high 
energy point, 
Minibatch discrimination, 
various other tricks. No result.  

Critic can’t see the difference 
in real and fake images.

Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.

ATLAS SiPulatiRn 3reliPinary
γ, 0.20 < |η| < 0.25

Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.

16

Energy Resolution

5From summer PubNote 2018

‘Energy’ is just the sum of 
energies in each cell 

It should be easy to have it 
correct ? :  NO !  

Tried training on single high 
energy point, 
Minibatch discrimination, 
various other tricks. No result.  

Critic can’t see the difference 
in real and fake images.

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
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GAN: Improved Energy Resolution

17

Other plots also very good

Reference

Simplified validation, before ATLAS software integration

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/


Condition GAN also on Impact Position of Particle

18

Continuous variable, 
not class conditioning

Average η - Particle’s Impact η

GAN learns to centre the shower  
around the particle position

ATLAS Simulation Work In Progress
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Calorimeter Alignment Conditioning
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Calorimeter Alignment Conditioning

p3 p2 p1 p0

φ

η

Hardest conditioning to get correct 
(HPO)

Motivating to move to Hits level (more granular) data

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation

ATLAS Simulation ATLAS Simulation

ATLAS Simulation

Two hot vector encoding



Smart Approximations

20

Aim is to plug into Atlas C++ infrastructure and hope that the GAN does well when validation done with complex variables

Currently calculating simpler variable that we hope will adequately describe the performance for GAN optimisation

Train on dataset without electronic noise, cross talk (which the ATLAS software adds later), make other approximations of real validation phase 

Do we care about modelling the sharp single-bin peaks? Can reproduce with ReLu activation, but we expect the noise to wash these 
unphysical peaks out 

Don’t want to condition energy with one-hot encoding, need to interpolate later

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress
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Integration of DNN into ATLAS (C++) Software

• Light Weight Trained Neural Network package built for fast inference in C++ framework: 
• Minimal dependencies 
• Avoid integrating heavy Tensorflow/PyTorch into software (CMS had multithreading 

nightmares) 

Speed & Resource utilisation (No GPUs, No Batch Parallelism): 
• DNNCaloGAN ~ FastCaloSimV2 ~70ms ( vs ~10s for Geant4) 

• LWTNN takes <1 ms per shower, rest is overhead (being optimised) 
• DNNCaloGAN memory footprint small

• 5 MB for LWTNN JSON file vs order GB for FCS parameterisation file

Eigen based NN inference package for C++

Now	we	can	make	fair	comparisons

https://github.com/lwtnn/lwtnn
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Now the real test: 
How are we doing in a high level validation inside Atlas software?



Second Critic doing it’s job! 23
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Disclaimer: 
FastCaloSim versions 

moving fast with 
improvements, the FCS 
plot (which is no longer 

up to date) not to be 
used for ranking 

methods but rather to 
get a rough idea

Total Uncalibrated Energy for 65 GeV Photons
Ja

nu
ar

y 
20

19

ATLAS Simulation Work In Progress



f3:Fraction of Energy in the Back

24
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ATLAS Simulation Work In Progress



Eratio (16 GeV)
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Performs worse at 
some other 

energies

(First_Max_Strip -Second_Max_Strip)/(First_Max_Strip+Second_Max_Strip)

ATLAS Simulation Work In Progress



High Statistics Public Plots with Interpolation

26

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

GAN: comparison in Athena with G4

26/09/2019 Michele Faucci Giannelli 8

Fractional energy deposit in the φ direction for the second EM barrel layer for a 16 GeV (left), 25 GeV
(centre) and 32 GeV photon reconstructed cluster in the range 0.20 < |η| < 0.25. GAN (red solid line) is
compared to Geant4 (black dashed line). A revised architecture of the GAN, as compared to the one in ATL-
SOFT-PUB-2018-001, is used to generate the response. The revised architecture includes an additional
discriminator focusing on the total energy of a shower.

G
AN

16 GeV 25 GeV 32 GeV

GAN never trained at 25 GeV!

Made public here: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-006/



High Statistics Public Plots with Interpolation
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GAN: comparison in Athena with G4

26/09/2019 Michele Faucci Giannelli 8

Fractional energy deposit in the φ direction for the second EM barrel layer for a 16 GeV (left), 25 GeV
(centre) and 32 GeV photon reconstructed cluster in the range 0.20 < |η| < 0.25. GAN (red solid line) is
compared to Geant4 (black dashed line). A revised architecture of the GAN, as compared to the one in ATL-
SOFT-PUB-2018-001, is used to generate the response. The revised architecture includes an additional
discriminator focusing on the total energy of a shower.
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Photons: Rphi

26/09/2019 Michele Faucci Giannelli 7

Fractional energy deposit in the φ direction for the second EM barrel layer for a 65 GeV photon reconstructed
cluster in the range 0.20 < |η| < 0.25. The 3x3 and 3x7 refers to the rectangle of cells considered around the
cluster centre. FCSV2 (red solid line) is compared to Geant4 (black dashed line). FCS V2 has an improved
treatment of the parameterisation of the later shower with respect to ATL-SOFT-PUB-2018-002. The new
version of FCS V2 improved the treatment of cross-talk between cells.
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Photons: Rphi

26/09/2019 Michele Faucci Giannelli 7

Fractional energy deposit in the φ direction for the second EM barrel layer for a 65 GeV photon reconstructed
cluster in the range 0.20 < |η| < 0.25. The 3x3 and 3x7 refers to the rectangle of cells considered around the
cluster centre. FCSV2 (red solid line) is compared to Geant4 (black dashed line). FCS V2 has an improved
treatment of the parameterisation of the later shower with respect to ATL-SOFT-PUB-2018-002. The new
version of FCS V2 improved the treatment of cross-talk between cells.

FC
S

65 GeV

16 GeV 25 GeV 32 GeV

GAN never trained at 25 GeV!

Made public here: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-006/
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Conclusion

• Highly conditioned GAN working inside Atlas software, other GAN, VAE groups are following suit 

• GAN can interpolate 

• Successfully conditioned on energy (hardest), particle position (easy), calorimeter geometry (hard), other DNNCaloSim 
approaches also trying 

• Motivates the possibility to have one conditioned GAN for full calorimeter 

• Wasserstein GANs (with Gradient Penalty) stable to train but limited, can’t make sharp decisions 

• Additional Critic (with low Gradient Penalty) can be used for important physics variables that need attention 

• Infusing physics knowledge was essential to push the final frontiers 

• Project could be taken further to include the two ends of the calorimeter, Hadronic Cal, other particles, Z vertex spread in 
the future
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Backup



Scale Up with GPUs, Distributed Deep Learning?

29
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1

• Training time: 2-7 Days on 1 GPU 
• Epochs: 7k-50k

• Training Size: 44000 events (50% of 
Dataset), ~300 features 

• CPU = 2 x GPU training time at 52% 
GPU utilisation

Cannot speed-up even with massive GPU farms: 
• no gain from model parallelism or data parallelism 
• time per epoch very small, number of epochs very large 
• training dataset changes after every 5 batches 
• Best we can do is parallel Hyper-Parameter Optimisation

Alternative: Gradient Reversal Layer + simultaneously train 3 networks with 
different learning rates rather than training ratio

Reminder: A conditioned WGAN-GP takes many many epochs to train, much 
beyond when the loss looks converged

https://arxiv.org/pdf/1409.7495.pdf

https://arxiv.org/pdf/1409.7495.pdf
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Take Aways

• Do not start with an oversimplified problem, GANs don’t scale that way 
• Is a feature important to model well? : Think of final use case
• Wasserstein GANs (with Gradient Penalty) stable to train but limited 

• Takes much longer to train than a vanilla GAN, specNorm GAN etc 
• People will not believe you but the conditional WGAN-GP continues to train long after the loss has “converged” 
• No mode collapse but performance might be limited by Gradient Penalty, find creative ways out (oppose of mode 

collapse) 
• Infusing physics knowledge:

• Even if the GAN could learn on it’s own, if you have the information, give it to the GAN either as input or as an 
auxiliary task 

• Distributed Deep Learning not a solution for long training time of WGANs if the problem is number of updates to the 
model 

• Lots of data not always the answer, just a small representative sample can go a long way. With conditioning, we don’t 
need balanced number of samples for each category (see soft extrapolation), GAN will still interpolate 

• Additional Critic can also be used for Transfer Learning on Data for specific features when Geant4 isn’t good enough 
• Large number of discrete conditioning was harder for us than smooth continuous ones 

• Getting all plots right simultaneously requires luck (multiple runs)



Soft Extrapolation

31

Train on only 10 events at 262 GeV, 5k events at other Energy points

ATLAS Simulation Work In Progress
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But performs well 
at 16, 25 GeV

Strips (65 GeV)
Eratio = (First_Max_Strip -Second_Max_Strip)/

(First_Max_Strip+Second_Max_Strip)

32

Width in Eta (in Strip Cell units)

⇒ Need detailed simulation of Strip

A plot FCS is also 
concerned about not 

getting right

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress



What is a good range of hyper-parameters to try anyway?

33

Gradient Penalty = 10

Standard Architecture with GP(weight=10) on 266 Cells which 
are the inputs to the Critic along with the conditional inputs

These are trained on a very small training set for quick tests, the actual results look better

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

Results were stable for usual GP values, ∈ (1,500)
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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What is a good range of hyper-parameters to try anyway?
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Energy gets better

Gradient Penalty = 1e-13 

ATLAS Simulation Work In Progress
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Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
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Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
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-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads
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The term E
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[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.

10

Never seen such a 
number in literature



What is a good range of hyper-parameters to try anyway?

33

Energy gets better

Gradient Penalty = 1e-13 

ATLAS Simulation Work In Progress

Gradient Penalty = 10

Standard Architecture with GP(weight=10) on 266 Cells which 
are the inputs to the Critic along with the conditional inputs

These are trained on a very small training set for quick tests, the actual results look better

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

And highly unstable training
Plots get worse

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

Results were stable for usual GP values, ∈ (1,500)
N

ot
re

vi
ew

ed
,f

or
in

te
rn

al
ci

rc
ul

at
io

n
on

ly

Hyperparameter Values
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Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads
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[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.

10

They are not equivalent, need to tune 
hyper parameters differently

Gradient Penalty on 1 input vs 266 inputs

Input features = 1 + Conditional

= Lambda(sumFunc)(m_input_image)

Careful: Sum Inside or Outside the Network?
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S Shape
Avg Eta vs Particle Eta

Middle Layer Strip Layer

GAN shifted up for visibility
GAN shifted up for visibility

Error bars very small

Error bars very small

Bars are standard deviationBars are standard deviation

GAN not shifted up
GAN not shifted up

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

65 GeV Photons Only

8 stip cells = 1 Middle Cell => 8 bumps
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Statistical analysis of HPO results

Chi2, KS, AD tests not useful
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Variation in training for random seed
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Use this plot as reference in following slides
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“Baseline” Claim: Training Ratio of 5 is good

Useful to make such assessments at initial R&D stage
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GAN Alchemy (May not generalise)

• Momentum can work against you in adversarial training (Adam -> RMSProp) 
• Results peak at certain epoch, then consistently deteriorate 

• Which epoch is a function of number of updates to generator (smaller epoch for more data / 
smaller batch size)  

• Upgrading Keras TF versions consistently improves results 
• Despite deep investigation, no explanation 
• Older versions were more stable, newer ones require epoch picking 

• Best way to HPO ? : Grad Student Decent 
• Getting all conditionings right simultaneously requires luck, epoch picking 

• We want to stick to hyper-parameters that get plots right more consistently during R&D stage 
• Do whatever is necessary to get the best model at the final stage 

• WGAN-GP hyper-parameter can suddenly have meaningful impact at 1e-13 ! Never seen in 
literature
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Trainable Swish Activation
SEARCHING FOR ACTIVATION FUNCTIONS

Prajit Ramachandran⇤, Barret Zoph, Quoc V. Le
Google Brain
{prajit,barretzoph,qvl}@google.com

ABSTRACT

The choice of activation functions in deep networks has a significant effect on
the training dynamics and task performance. Currently, the most successful and
widely-used activation function is the Rectified Linear Unit (ReLU). Although
various hand-designed alternatives to ReLU have been proposed, none have man-
aged to replace it due to inconsistent gains. In this work, we propose to lever-
age automatic search techniques to discover new activation functions. Using
a combination of exhaustive and reinforcement learning-based search, we dis-
cover multiple novel activation functions. We verify the effectiveness of the
searches by conducting an empirical evaluation with the best discovered activa-
tion function. Our experiments show that the best discovered activation function,
f(x) = x · sigmoid(�x), which we name Swish, tends to work better than ReLU
on deeper models across a number of challenging datasets. For example, simply
replacing ReLUs with Swish units improves top-1 classification accuracy on Im-
ageNet by 0.9% for Mobile NASNet-A and 0.6% for Inception-ResNet-v2. The
simplicity of Swish and its similarity to ReLU make it easy for practitioners to
replace ReLUs with Swish units in any neural network.

1 INTRODUCTION

At the heart of every deep network lies a linear transformation followed by an activation func-
tion f(·). The activation function plays a major role in the success of training deep neural net-
works. Currently, the most successful and widely-used activation function is the Rectified Lin-
ear Unit (ReLU) (Hahnloser et al., 2000; Jarrett et al., 2009; Nair & Hinton, 2010), defined as
f(x) = max(x, 0). The use of ReLUs was a breakthrough that enabled the fully supervised training
of state-of-the-art deep networks (Krizhevsky et al., 2012). Deep networks with ReLUs are more
easily optimized than networks with sigmoid or tanh units, because gradients are able to flow when
the input to the ReLU function is positive. Thanks to its simplicity and effectiveness, ReLU has
become the default activation function used across the deep learning community.

While numerous activation functions have been proposed to replace ReLU (Maas et al., 2013; He
et al., 2015; Clevert et al., 2015; Klambauer et al., 2017), none have managed to gain the widespread
adoption that ReLU enjoys. Many practitioners have favored the simplicity and reliability of ReLU
because the performance improvements of the other activation functions tend to be inconsistent
across different models and datasets.

The activation functions proposed to replace ReLU were hand-designed to fit properties deemed
to be important. However, the use of search techniques to automate the discovery of traditionally
human-designed components has recently shown to be extremely effective (Zoph & Le, 2016; Bello
et al., 2017; Zoph et al., 2017). For example, Zoph et al. (2017) used reinforcement learning-
based search to find a replicable convolutional cell that outperforms human-designed architectures
on ImageNet.

In this work, we use automated search techniques to discover novel activation functions. We focus
on finding new scalar activation functions, which take in as input a scalar and output a scalar, because
scalar activation functions can be used to replace the ReLU function without changing the network
architecture. Using a combination of exhaustive and reinforcement learning-based search, we find
a number of novel activation functions that show promising performance. To further validate the

⇤Work done as a member of the Google Brain Residency program (g.co/brainresidency).
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While these results are promising, it is still unclear whether the discovered activation functions
can successfully replace ReLU on challenging real world datasets. In order to validate the effec-
tiveness of the searches, in the rest of this work we focus on empirically evaluating the activation
function f(x) = x · �(�x), which we call Swish. We choose to extensively evaluate Swish in-
stead of max(x,�(x)) because early experimentation showed better generalization for Swish. In
the following sections, we analyze the properties of Swish and then conduct a thorough empirical
evaluation comparing Swish, ReLU, and other candidate baseline activation functions on number of
large models across a variety of tasks.

4 SWISH

To recap, Swish is defined as x · �(�x), where �(z) = (1 + exp(�z))�1 is the sigmoid function
and � is either a constant or a trainable parameter. Figure 4 plots the graph of Swish for different
values of �. If � = 1, Swish is equivalent to the Sigmoid-weighted Linear Unit (SiL) of Elfwing
et al. (2017) that was proposed for reinforcement learning. If � = 0, Swish becomes the scaled
linear function f(x) = x

2 . As � ! 1, the sigmoid component approaches a 0-1 function, so
Swish becomes like the ReLU function. This suggests that Swish can be loosely viewed as a smooth
function which nonlinearly interpolates between the linear function and the ReLU function. The
degree of interpolation can be controlled by the model if � is set as a trainable parameter.

Figure 4: The Swish activation function. Figure 5: First derivatives of Swish.

Like ReLU, Swish is unbounded above and bounded below. Unlike ReLU, Swish is smooth and non-
monotonic. In fact, the non-monotonicity property of Swish distinguishes itself from most common
activation functions. The derivative of Swish is

f 0(x) = �(�x) + �x · �(�x)(1� �(�x))

= �(�x) + �x · �(�x)� �x · �(�x)2

= �x · �(x) + �(�x)(1� �x · �(�x))
= �f(x) + �(�x)(1� �f(x))

The first derivative of Swish is shown in Figure 5 for different values of �. The scale of � controls
how fast the first derivative asymptotes to 0 and 1. When � = 1, the derivative has magnitude less
than 1 for inputs that are less than around 1.25. Thus, the success of Swish with � = 1 implies that
the gradient preserving property of ReLU (i.e., having a derivative of 1 when x > 0) may no longer
be a distinct advantage in modern architectures.

The most striking difference between Swish and ReLU is the non-monotonic “bump” of Swish when
x < 0. As shown in Figure 6, a large percentage of preactivations fall inside the domain of the bump
(�5  x  0), which indicates that the non-monotonic bump is an important aspect of Swish. The
shape of the bump can be controlled by changing the � parameter. While fixing � = 1 is effective
in practice, the experiments section shows that training � can further improve performance on some
models. Figure 7 plots distribution of trained � values from a Mobile NASNet-A model (Zoph et al.,
2017). The trained � values are spread out between 0 and 1.5 and have a peak at � ⇡ 1, suggesting
that the model takes advantage of the additional flexibility of trainable � parameters.

5

Swish(x)=x⋅sigmoid(βx)

Trainable β

~ReLu

~linear ~ReLu

~linear

~x⋅sigmoid(x)

~x⋅sigmoid(x)

https://arxiv.org/abs/1710.05941
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High Stats Comparison With AF2Comparison in Athena: E reco /E true

10/09/2019 Michele Faucci Giannelli 13

Really good agreement in cluster energy
Significantly better than AF2
Better than FCSv2 without G4 hits

Even for the interpolated point at 25 GeV

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress



 EratioγReconstructed 
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

a.
u.

0.02

0.04
0.06

0.08

0.1

0.12

0.14

0.16
0.18

0.2

0.22
ATLAS Simulation  Internal

| < 0.25, E=25.0GeVη, 0.20 < |γ

DNNCalo
G4FastCalo
FullG4

Interpolate Untrained 25 GeV

42

 raw E [GeV]γReconstructed 
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Proof of concept that 1 GAN can interpolate parameter space: extendible to eta, 
phi conditioning …

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress



Condition GAN also on Impact Position of Particle

43

Continuous variable, 
not class conditioning



Condition GAN also on Impact Position of Particle

43

Continuous variable, 
not class conditioning

Average η - Particle’s Impact η

GAN learns to centre the shower  
around the particle position within the middle cell

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress
ATLAS Simulation Work In Progress
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Conditional GAN Algorithm 
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https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
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ATLAS Simulation Work In Progress
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Test on Untrained Energy Point: 
25 GeV

Remember, GAN trained on 9 discrete energy points:{1,2,4,8,16,  
32, 65, 131, 262} GeV  



16 GeV Sample: Total E
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ATLAS Simulation Work In Progress
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5D latent space 
variable 

distributions
[From Model 2] 

● IAF transformations make the latent 
space distributions more Gaussian 
like.  

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/

VAE Latent Space

49

24

5D latent space 
variable 

distributions
[From Model 1] 

● Latent space distributions are not 
well modelled by Gaussians 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/
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5D latent space 
variable 

distributions
[From Model 1] 

● Latent space distributions are not 
well modelled by Gaussians 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/

5D Latent 
Space don’t 

look Gaussian
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5D latent space 
variable 

distributions
[From Model 2] 

● IAF transformations make the latent 
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5D latent space 
variable 

distributions
[From Model 1] 

● Latent space distributions are not 
well modelled by Gaussians 
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IAF transformations 
make the latent 

space distributions 
more Gaussian like.  
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5D latent space 
variable 

distributions
[From Model 2] 

● IAF transformations make the latent 
space distributions more Gaussian 
like.  

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/

Inverse Autoregressive transformations

a type of Normalizing Flow to make the 
latent space more Gaussian

When we use the Decoder as a generator, it will 
be more correct to sample from a Gaussian 
distribution, impact on physics under study

• Input : a variable with some specified ordering 
(multidimensional tensor ) 

• Output : (μ,σ) for each element of the input 
variable conditioned on the previous elements.



GAN on Voxels (Edinbergh team)

50

Trained at single energy point and works 
When moving to conditioned GAN, old setup 
doesn’t work, need to re-start from scratch ! 

Voxelisation was tuned a lot to get good results 
Possible that it was overturned for this energy, eta 

point
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How do we compare with the current AFII  
(FCS V1)?

This is our first look at AFII 
(includes data tuning)



G4 vs AF2 vs DNNCalo
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Fraction of Energy in Back WEta1

Much better than AF2 in the back, not as good at Strip Width
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ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress



Keras Version

Inexplicable improvement in results and convergence by upgrading from 
[Keras 2.0.8 with TF-GPU 1.3.0] to [Keras 2.1.5 with TF-GPU 1.4.1] 

• No hints from release notes 

• Same improvement also seen in [Keras 2.1.2 TF 1.4.1] the CPU version

Old Keras +TF New Keras +TF

G4 Old 
Keras

New 
Keras
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ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress
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G4 10k 20k 30k 45k 50k

Performance with Epoch

Changed after new Keras
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20%1% 2% 4% 10% 50%

Performance with Training Set Size

Improved after dropping momentum, fewer epochs for larger training size

We are not limited by number of training events, 
a more representative dataset however would help

ATLAS Simulation Work In Progress
ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

ATLAS Simulation Work In ProgressATLAS Simulation Work In Progress



MC vs MC
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Phi from same Event  vs  Phi from another random event

Distributions for Middle Layer are almost perfect 

Blue here is also Geant4 data (not GAN!)

ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress
ATLAS Simulation Work In Progress

ATLAS Simulation Work In Progress
ATLAS Simulation Work In Progress
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Strip (Layer 1)

Strip (Layer 1)

Strip (Layer 1)

Same shower pattern, different image!



58

Strip (Layer 1)

Strip (Layer 1)

Strip (Layer 1)

Same shower pattern, different image!
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Same shower pattern, different image!
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Same shower pattern, different image!


