

Anais Möller for the Fink team

The Rubin Observatory Legacy Survey of Space and Time

in a nutshell:

- telescope: 6.7-m equivalent
- world's largest CCD camera: 3.2 * 10⁹ pixels

in numbers:

- 10-year survey, starting 2022
- 1,000 images/night = 15 TB/night

LSST + transients alerts

LSST + transients alerts

Möller | Dark Energy Colloquium 2020

LSST + transients + dark energy

Möller | Dark Energy Colloquium 2020

$\ensuremath{\mathsf{FINK}}$ a new generation of broker for the LSST community

Anais Möller^{1*}, Julien Peloton²[†], Emille E. O. Ishida¹[‡], Chris Arnault², Etienne Bachelet ³, Tristan Blaineau², Dominique Boutigny⁴, Abhishek Chauhan⁵, Emmanuel Gangler¹, Fabio Hernandez⁶, Julius Hrivnac², Marco Leoni^{2,7}, Nicolas Leroy², Marc Moniez², Sacha Pateyron², Adrien Ramparison², Damien Turpin⁸, Réza Ansari², Tarek Allam Jr.^{9,10}, Armelle Bajat ¹², Biswajit Biswas^{1,13}, Alexandre Boucaud¹⁴, Johan Bregeon¹⁵, Jean-Eric Campagne², Johann Cohen-Tanugi^{16,1}, Alexis Coleiro¹⁴, Damien Dornic¹⁷, Dominique Fouchez¹⁷, Olivier Godet¹⁸, Philippe Gris¹, Sergey Karpov ¹², Ada Nebot Gomez-Moran ¹⁹, Jérémy Neveu², Stephane Plaszczynski², Volodymyr Savchenko²⁰, Natalie Webb¹⁸

20 different affiliations (13 in France, 7 abroad)

arXiv: 2009.10185

F/NK

IN2P3 initiative to propose a broker to serve the need of LSST-France as well as the different french multi-messenger astronomy actors.

Our added values (+ std broker)

•Science: Supernovae, microlensing, anomaly detection, and multimessenger astronomy: GRB alerts, gamma ray, neutrinos, gravitational wave events,

• Methods: Adaptive learning, Bayesian NN.

•Technology: big data, cloud.

Technology & infrastructure: J. Peloton (IJCLab) Science & ML: E. Ishida, A. Möller (LPC) + 33 co-authors

Big data & cloud technology Diverse science goals & community

F/NK Deployement & science verification with ZTF

- MoU with Zwicky Transient Facility (ZTF), "pathfinder" for LSST.
- ~100,000 alerts per night (~10GB/night)

More than 30 million alerts collected from ZTF, and 8 million alerts processed in 1 year.

Cross-matching (e.g. with CDS xmatch service)

+

1238 Galaxies (Simbad) SNe (candidates) 515 Microlensing (candidates) All processed alerts

classification (machine

learning based algorithms)

2104

Variable Stars (Simbad)

1. Select promising candidates for spectroscopic follow-up:

- 1. Select promising candidates for spectroscopic follow-up:
- Identify known transients
 - Cross-matching: catalogues, alert services

- 1. Select promising candidates for spectroscopic follow-up:
- Early classification

Figure 8. *Top:* Lightcurve of a supernova type Ia event classified by FINK (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN 2019ugu). Blue circle markers and orange circle markers indicate

- 1. Select promising candidates for spectroscopic follow-up:
- Early classification

Classification delay with respect to peak measured brightness [day]

ZTF alert stream November-December 2019

- 1. Select promising candidates for spectroscopic follow-up:
- Reduce number of alerts swiftly

sample	# alerts	% alerts
quality cuts	2,417,284	100%
selection cuts	576,190	23.84%
SN1 > 0.5	$365,\!228$	$15{,}11\%$
SN2 > 0.5	$208,\!978$	8.65%
SN1 > 0.6	$308,\!822$	12.78%
SN2 > 0.6	145,736	6.03~%

ZTF alert stream November-December 2019

- 1. Select promising candidates for spectroscopic follow-up:
- Reduce number of alerts swiftly

sample	# alerts	% alerts
quality cuts	$2,\!417,\!284$	100%
selection cuts	$576,\!190$	23.84%
SN1 > 0.5	$365,\!228$	$15{,}11\%$
SN2 > 0.5	$208,\!978$	8.65%
SN1 > 0.6	$308,\!822$	12.78%
SN2 > 0.6	145,736	6.03~%
		The second se

ZTF alert stream November-December 2019

Can be further reduced to achieve: high-purity SNIa samples, SNe Ia/galaxy properties

2. Improve training sets for photometric classification

- 2. Improve training sets for photometric classification
- Select SNe or transients not well characterised for follow-up

- 2. Improve training sets for photometric classification
- Active Learning approach

VISTA telescope Y. Beletsky (LCO)/ESO

- 2. Improve training sets for photometric classification
- Active Learning approach

Work in progress in Fink

Already promising results with ZTF supernova selection.

- Fink will be **crucial to select the SNe Ia in LSST** to constrain the cosmic expansion & Dark Energy equation-of-state.
- With and without spectroscopic follow-up
- Key for coordinating resources

Currently building the interface with teams and follow-up facilities

https://fink-broker.org arXiv:2009.10185

Identifying interesting alerts is only part of the story: we need coordination with other facilities, follow-up resources and existing networks.

- Your expertise is important to us!
- Discussions and work with teams from: SVOM, GRANDMA, CTA, Integral, KM3NET, ...

We need you!

- Full broker proposal (end 2020).
- Join us! <u>https://fink-broker.org/joining.html</u>