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The Rubin Observatory Legacy 
Survey of Space and Time

in numbers: 

• 10-year survey, starting 2022 

• 1,000 images/night = 15 TB/night

in a nutshell: 

• telescope: 6.7-m equivalent  

• world’s largest CCD camera: 
3.2 * 109 pixels

LSST Project/NSF/AURA

2
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LSST + transients alerts
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Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.

Now

60s

24h

Year

End

LSST Project/NSF/AURA
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LSST + transients alerts
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Catalog: 15PB, 37 billion objects
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Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies
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Accessible via the LSST Science Platform & 
LSST Data Access Centers.
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Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.

Now

60s

24h

Year

End

LSST + transients + dark energy

Up to ~300,000 SNe Ia 
for cosmology in a 

decade!

(observing strategy dependent)

to constrain the 
equation-of-state of 

Dark Energy
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Process, add value, distribute

Teams, telescopes, etc…

Enriched and 
filtered stream

LSST stream
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ABSTRACT
Fink is a broker designed to enable science with large time-domain alert streams such
as the one from the upcoming Legacy Survey of Space and Time (LSST). It exhibits
traditional astronomy broker features such as automatised ingestion, enrichment, se-
lection and redistribution of promising alerts for transient science. It is also designed
to go beyond traditional broker features by providing real-time transient classification
which is continuously improved by using state-of-the-art Deep Learning and Adaptive
Learning techniques. These evolving added values will enable more accurate scientific
output from LSST photometric data for diverse science cases while also leading to a
higher incidence of new discoveries which shall accompany the evolution of the survey.
In this paper we introduce Fink, its science motivation, architecture and current sta-
tus including first science verification cases using the Zwicky Transient Facility alert
stream.

Key words: surveys – methods: data analysis – software: data analysis – transients:
gamma-ray bursts – gravitational lensing: micro – transients: supernovae
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20 different affiliations (13 in France, 7 abroad)
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IN2P3 initiative to propose a broker to 
serve the need of LSST-France as well 
as the different french multi-messenger 
astronomy actors.

LUPM

APC CPPM

Geneva

LAL

LPNH
E

LPSC

LPC
LAP
P

IAPCC-IN2P3

...

Our added values (+ std broker)

●Science: Supernovae, microlensing, anomaly 
detection, and multimessenger astronomy: GRB alerts, 
gamma ray, neutrinos, gravitational wave events, ….


●Methods: Adaptive learning, Bayesian NN.


●Technology: big data, cloud.
Technology & infrastructure: J. Peloton (IJCLab) 
Science & ML: E. Ishida, A. Möller (LPC) 
+ 33 co-authors
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Fink, a new generation broker for the LSST community 5

Figure 1. Architecture of Fink. Each box is a cluster of machines deployed on a cloud. The main streams of alerts for Fink (ZTF, and
LSST) are collected and processed inside the Processing cluster running Apache Spark (see Sec. 3.2, 3.3). At the end of the processing,
a series of filter divides the stream into substreams based on user needs, and data is sent to subscribers via the Communication cluster
running Apache Kafka (see Sec. 3.6.1). At the end of the night, all processed data is aggregated and pushed into the Science Portal,
based on Apache HBase, where users can connect via a web browser and explore all processed Fink data (see Sec. 3.6.2). Alert data and
added-values are stored at various stages on the Hadoop Distributed File System (HDFS). Other survey data streams (such as alert data
from LIGO/Virgo, Fermi or Swift) are collected by the Communication cluster and sent to the Processing cluster to be used to enrich
the main stream of alerts. See text for more information on each component.

? Multi-wavelength and multi-messenger event cross-
matches from survey feeds.

• Classify alerts within minutes of observations.
? Early light-curve classification.
? Provide classification for a subset of science cases

which is continuously improved using state-of-the-art deep
learning and adaptive learning techniques.

(iii) Filter:

• Allow customizable filtering of alerts.
? Availability of added values and historical data for

filtering.

(iv) Redistribute:

• Transmit enriched and reduced stream within min-
utes.

• Support forwarding of partial streams to downstream
teams.

• Support web-interface and API clients to redistribute
alerts to science teams and follow-up facilities.
? World-public access of all of our products and origi-

nal alert stream (with the exception of proprietary cata-
logues/data).

(v) Additional science and technology requirements:

? Save all alerts to allow post-processing and repro-
ducibility.
? Version control of the state of the broker and added

values to reproduce selection functions.
? Possibility of ingesting and processing a simulated

data stream to evaluate performance.
? Database architecture capable of handling billions of

sources.
? Architecture that can be deployed in any cloud.

2.2 E�cient big data processing

In order to accommodate the paradigm change introduced
by the multi-TB alert data set of LSST, Fink is designed
to take advantage of new technological approaches based on
big data tools.

Cloud computing

Fink handles large data volumes by distributing the data
and the load over many machines. As alerts are received,
the system is scaled by adding more machines which inde-
pendently process the alerts using the same software. This
is called horizontal scaling and it is highly successful in the
big data industry.

To deploy such a processing, we use cloud computing
that brings many benefits in terms of scalability of process-
ing and cost e↵ectiveness, fault tolerance, shareability of re-
sults, as well as increased portability and reproducibility. In
Fink we currently operate a prototype on the VirtualData
OpenStack-based cloud, a shared computing and storage in-
frastructure at University Paris-Saclay. For LSST process-
ing, we will host the production service at CC-IN2P3, which
also runs an OpenStack cloud and will have a local copy
of LSST data that can be e�ciently exploited for internal
cross-match needs. CC-IN2P3 is a large scientific data cen-
ter committed to contribute to process 50% of the raw LSST
data as a satellite data processing center during the opera-
tions phase of the LSST project.

Distributed computation

To e�ciently process LSST big data volume, Fink is con-
structed around Apache Spark (Zaharia et al. 2012), an

Fink team 2020

Big data & cloud technology 
Diverse science goals & community

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185
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• MoU with Zwicky 
Transient Facility (ZTF), 
“pathfinder” for LSST. 

• ~100,000 alerts per night 
(~10GB/night)


Deployement & science 
verification with ZTF

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185
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More than 30 million alerts 
collected from ZTF, and 8 
million alerts processed in 1 
year.


Cross-matching (e.g. with 
CDS xmatch service) 

+ 

classification (machine 
learning based algorithms)

F���, a new generation broker for the LSST community 11

Figure 5. Footprint of the ZTF alert stream from November 2019 to June 2020 associated to a subset of transient types using current F��� science modules:
confirmed and candidates Solar System objects (top-left blue, see Sec. 4.5), variable stars from the cross-match with the Simbad catalog (orange top-right, see
Sec. 4.1), alerts matched to a galaxy in the Simbad catalog (green middle-left, see Sec. 3.3.1), supernovae type Ia candidates selected using SuperNNova (red
middle-right, see Sec. 4.4.1), microlensing event candidates selected using LIA (purple bottom-left, see Sec. 4.3), and all 7,975,588 processed alerts by F���
that pass quality cuts (bottom-right, see Sec. 3.2). The Planck Commander thermal dust map (Akrami et al. 2018) is shown in the background for reference. All
maps are in the Galactic coordinate system, with a healpix resolution parameter equal to Nside=128 (Gorski et al. 2005), except for alerts matching galaxies
(green middle-left) where Nside=64 has been used to increase the readability.

We found no robust association between the ZTF transient
alerts and the Swift GRBs. On the contrary, because the Fermi-
GBM localisation accuracy is much worse than the one of the
Swift instruments, we found associations for 393 ZTF transient
candidates with 22 Fermi GRBs in total over the entire period of our
investigations. We visually inspected these candidates, comparing

real afterglow light-curves with ZTF observations (detection+upper
limits prior to the detection) to further select candidates. After
applying this selection procedure to ZTF observations, of those
remaining candidates with known GRB afterglow light curves
(seen on-axis) we were able to rule out 97% of them as being
credible optical afterglow candidates. The remaining 3% of the

Fink team 2020

SV with ZTF

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185
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Supernovae & Fink
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Supernovae & Fink
1. Select promising candidates for spectroscopic follow-up:
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Supernovae & Fink
1. Select promising candidates for spectroscopic follow-up:

• Identify known transients

• Cross-matching: catalogues, alert services
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Supernovae & Fink
1. Select promising candidates for spectroscopic follow-up:

• Early classification 

Fink, a new generation broker for the LSST community 15

Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-

Fink team 2020

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185

Möller et al. 2020
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Supernovae & Fink
1. Select promising candidates for spectroscopic follow-up:

• Early classification 

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185

16 Möller, Peloton, Ishida et al.

Figure 10. Delay (in days) between the first classification by
Fink of a supernova type Ia event (using the SN1 model) and
its peak measured brightness, between 01 November 2019 and 31
December 2019. Negative delays mean the classification happens
before the supernova reaches its peak brightness. We show only
data for supernovae type Ia that exploded after 01 November 2019
(from TNS query), and for which a peak can be identified. The
median delay is -6 days (orange dotted vertical line).

ison to those achieved by employing a randomly selected,
balanced, training sample enclosing half of the total data
(6280 objects). This indicates that the AL strategy has the
potential to achieve comparable results with a third of the re-
quired objects for training. Such a feature will be paramount
once we transition for a real data scenario with limited spec-
troscopic follow-up.

The main philosophy behind this module is to fully ex-
ploit details in the real data, which can result in good classifi-
cation with a minimum training, as such, in order to classify
real data it should ideally be allowed to perform queries on
the real data. We are currently processing past ZTF alert
stream with available labels to simulate the active learning
loop (Leoni et al., in prep).

4.5 Ongoing Solar System objects work

ZTF alert packets include some information about the dis-
tance and name to the nearest known Solar System object
from the Minor Planet Center16 archive if it exists. We use
this information to label alerts as confirmed Solar System
objects. In addition, we define a filter to identify candidates
for Solar System objects. We select alerts that have:

• Total detection number is 1 or 2 (ndethist).
• If 2 detections, observations must be within 30 min.
• No stellar counterpart from the PanSTARRS-DR1 cat-

alog, (sgscore1 < 0.76 (Tachibana & Miller 2018)
• No PanSTARRS-DR1 counterpart within 1.5 arcsec-

onds.

About 10% of all processed ZTF alerts between November
2019 and June 2020 are labelled as Solar System objects
(confirmed and candidates), and they are mostly located
along the ecliptic plane, as shown in Figure 5.

16 https://minorplanetcenter.net/

5 CONCLUSION

In this paper we present Fink, an alert broker designed for
the LSST alert stream. Our broker is the confluence between
time-domain astronomy and big data, required to fully har-
ness the power of LSST.

Our broker’s goal is to enable a wide variety of time-
domain science. To enable this, it fulfils traditional broker
tasks and goes beyond them by applying state-of-the-art
technology and machine learning algorithms.

Fink is based on R&D technology that is both robust
and scalable to LSST’s data volumes. We have tested our
framework with up to 100, 000 incoming alerts per minute
which is beyond the expected 20, 000 alerts per minutes for
LSST. We are capable to process such volumes within min-
utes and keep an alert database for post-processing. Further-
more, our highly modular design is shown to allow e�cient
integration of existing and emergent tools as well as trace-
able evolution of the state of the broker.

The broker is currently deployed on the cloud and is pro-
cessing the ZTF public live-alert stream. Between November
2019 and June 2020, Fink has received 25 million alerts and
processed 8 million alerts from this public stream. All alerts
(received and processed) are saved in the Fink database to
enable post-processing.

In this work, we have shown that Fink is able to select
microlensing, GRB counterparts and supernova candidates
with current science modules using the ZTF public alert
stream. These initial science cases showcase the performance
of our cross-matching (catalogues and multi-wavelength sur-
veys) and classification modules together with customisable
filtering.

We are currently working on developing more science
modules and improving our current ones. We invite the com-
munity for new contributions on new and existing science
cases. Importantly, we are constructing web-interfaces and
API services to enable a seamless user experience and en-
able automatising follow-up coordination with observational
facilities and teams.

Fink is an evolving framework and this work reflects
its status as of August 2020. As it is open sourced, its up-
dated status can be found in our GitHub repository 17. All
parts include comprehensive test suites and a general docu-
mentation with installation instructions (locally and in the
cloud) and tutorials are available from the project website18.
Contributions and bug reports are encouraged.

SOFTWARE PACKAGES USED

Finkmakes extensive use of several libraries and frameworks
among which projects from the Apache Software Foun-
dation19 (Apache Hadoop, Apache HBase, Apache Kafka,
Apache Spark), astropy, numpy, matplotlib, pandas, py-
torch, scikit-learn (McKinney 2010; Van Der Walt et al.
2011; The Astropy Collaboration et al. 2018; Astropy Col-
laboration et al. 2013; Hunter 2007; Paszke et al. 2019; Pe-
dregosa et al. 2011).

17 https://github.com/astrolabsoftware
18 https://fink-broker.org/
19 https://apache.org/

Fink team 2020

ZTF alert stream November-December 2019
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1. Select promising candidates for spectroscopic follow-up:

• Reduce number of alerts swiftly 
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Supernovae & Fink

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 3. Current single core alert throughput (alerts/second)
for each science module deployed in Fink, using replayed ZTF
alert data. Microlensing: microlensing classification based on
Lens Identification Algorithm (LIA) Godines et al. (2019), Ac-
tive Learning: supernovae classification based on Random Forest
Ishida et al. (2019a), SuperNNova: supernovae classification using
SuperNNova Möller & de Boissière (2019), xMatch: CDS cross-
matching service. We also show the I/O throughput, that is the
number of alerts per second written on HDFS by a single CPU.
For reference, the grey dashed horizontal line shows a single sci-
ence module throughput corresponding to 2 seconds processing
using 100 CPU at LSST scale (10,000 alerts received every 30
seconds, before applying quality cuts). While we are working to
bring all performances above this threshold, the classifiers that
use additional filters before processing alert data can a↵ord a
lower throughput (e.g. supernovae modules or microlensing).

3.3.3 Currently implemented science modules

We summarise here the currently implemented science
modules in Fink. Additional ones are in development and
new contributions are encouraged:

Cross-matching modules:

• Catalogues: Simbad catalog (Wenger et al. 2000), with
a matching radius of 1 arcsecond, using the xmatch service
provided by CDS.

• Surveys: LIGO/Virgo, Fermi, Swift alerts via the
Comet broker (live), and survey public catalogues (post-
processing).

• Other services: Transient Name Server (TNS) for recent
classifications.

Classification modules:

• Microlensing: Classification of events using LIA based
on Godines et al. (2019).

• Supernovae partial and complete light-curve classifica-
tion: Recurrent Neural Network (RNN) architecture on Su-
perNNova (Möller & de Boissière 2019).

Additionally we determine potential Solar System ob-
ject based on a series of filters.

3.4 Post-processing with database

The broker collects and stores all incoming alerts, as well as
additional information derived by its science modules. The
data is stored on the HDFS cluster (see Fig 1), and it remains

accessible for further investigations or re-processing. Given
the multi-TB size of the dataset, specific tools are required
to analyse it e�ciently such as Apache Spark which allows
real-time or post-processing analyses with little changes and
on the same computing platform. Apache Spark has the ad-
vantage of being able to hold the dataset in the memory of
the di↵erent machines as long as it is required for the anal-
ysis, and to combine the results globally only at the end,
transparently to the user, resulting in very high performance
when exploring the historical data.

All the processing tools used in live processing by the
broker can be re-run on historical data collected over the
years. Fink is thus able to quickly perform comparisons of
performances of di↵erent machine learning models, adding
cross-matches with other catalogues, or exploring new pro-
cessing modules while keeping the development cost low.
Further, all the broker tools and science modules are ver-
sioned which will be key to properly track selection func-
tions for a variety of science cases during the LSST decade
and beyond.

3.5 Feedback

One of the defining features of Fink is its designed ability to
improve the accuracy of added values as the survey evolves
by enabling the use of adaptive learning strategies. Each sci-
ence module which makes use of such strategies encapsulates
the learning loop within it.

To improve the accuracy of specific added values, po-
tentially informative objects are identified in the stream and
their labels are searched continuously in known public data
bases using our cross-matching module. Moreover, Fink will
make public the list of objects of interest for each science
module, ensuring the information is spread through the spec-
troscopic follow-up community through standard channels
such as TNS for transient discovery, VOEvents for multi-
messenger counterparts and Target of Observation Manager
(TOM10) systems interfacing between brokers and follow-up
facilities.

Once a new informative label is available, the user is
notified and the machine learning models can be retrained.
This process can be computationally very expensive depend-
ing on the volume of training data, complexity of the model
and frequency with which labels are provided. For the first
two science modules employing adaptive learning strategies
(SN and Anomaly Detection) Fink resources will be avail-
able for automatic model update. Other community projects
willing to implement such strategies can take advantage of
the infrastructure provided by Fink for cross-match and ad-
vertisement of desired labels but will be initially responsi-
ble for retraining their own modules. Further arrangements
to automatise this process within the broker will require an
evaluation of the computational cost and available resources.

The constant update of the machine learning models
also means that Fink will be able to reprocess previous alerts
and provide more accurate classifications of historical with
the evolution of the survey. We plan to hold frequent data re-
leases with updated classifications and anomaly scores which

10 https://lco.global/tomtoolkit/
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-

Fink team 2020

ZTF alert stream November-December 2019

Can be further reduced to achieve: 
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Figure 9. Evolution of the classification results as a function of the survey duration for the time-domain AL considering the SNPCC
training set as completely given in the beginning of the survey.

ered by training data (higher magnitudes). At 900 queries,
the set of queried objects chosen by passive learning (red
line, middle column) follows closely the distribution found
in the target sample (blue), - but this does not translate
into a better classification because the bias present in the
original training was not yet overcome. On the other hand,
the discrepancy in distributions between the target sample
(blue region) and the set of objects queried by AL (red line,
right-most column) at 900 queries is a consequence of the ex-
istence of the initial training18. The fact that AL takes this
into account is reflected in the classification results (figure
5).

These results provide evidence that AL algorithms are
able to improve SN photometric classification results over
canonical spectroscopic follow-up strategies, or even passive
learning in a highly idealized environment19. However, in
order to have a more realistic description of a SN survey, we
need to take into account the transient nature of the SNe
and the evolving aspect of an observational survey.

18 The reader should keep in mind that after 1000 queries the
model is trained in a sample containing the complete SNPCC
spec sample added to the set of queried objects.
19 A result already pointed out by Gupta et al. (2016).

5 REAL-TIME ANALYSIS

In this section, we present an approach to deal with the time
evolving aspect of spectroscopic follow-ups in SN surveys.
This is done through the daily update of:

(i) identification of objects allocated to query and target
samples,

(ii) feature extraction and
(iii) model training.

We begin considering the full SNPCC spectroscopic
sample completely observed at the beginning of the survey
- this allows us to have an initial learning model. Then, at
each observation day d, a given SN is included in the analy-
sis if, until that moment, it has at least 5 observed epochs in
each filter. If this first criterion is fulfilled, the object is des-
ignated as part of the query sample if its r-band magnitude
is lower than or equal to 24 (mr  24 at d) - otherwise, it
is assigned to the target sample20. Figure 8 shows how the
number of objects in the query (yellow circles) and target

20 We consider an object with r-band magnitude of 24 to have the
minimum brightness necessary to allow spectroscopic observation
with a 8-meter class telescope.

MNRAS 000, 1–18 (2018)
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Figure 5. Evolution of classification results as a function of the number of queries for the static full light curve analysis.

mined. We fit each filter independently in flux space with
a Levenberg-Marquardt least-square minimization (Madsen
et al. 2004). Figure 4 shows an example of flux measure-
ments, corresponding errors and best-fit results in all 4 filters
for a typical, well-sampled, SN Ia from SNPCC data.

3.2 Classifier

Once the data has been homogenized, we need a supervised
learning model to harvest the information stored in the spec-
troscopic sample. Analogous to the feature extraction case,
the choice of classifier also impacts the final classification
results for a given static data set (Lochner et al. 2016). In
order to isolate the impact of AL in improving a given config-
uration of feature extraction and machine learning pipeline,
we chose to restrict our analysis to a single classifier. A com-
plete study on how di↵erent classifiers respond to the update
in training provided by AL is out of the scope of this work,
but is a crucial question to be answered in subsequent stud-
ies. All the results we present below were obtained with a
random forest algorithm (Breiman 2001).

Random forest is a popular machine learning algorithm
known to achieve accurate results with minimal parameter
tuning. It is an ensemble technique made up of multiple de-
cision trees (Breiman et al. 1984), constructed over di↵erent

sub-samples of the original data. Final results are obtained
by averaging over all trees (for further details, see appendices
A and B of Richards et al. 2012a). The method has been suc-
cessfully used for SN photometric classification (Richards
et al. 2012a; Lochner et al. 2016; Revsbech et al. 2017). In
what follows, we used the scikit-learn11 implementation
of the algorithm with 1000 trees. In this context, the prob-
ability of being a SN Ia, pIa, is given by the percentage of
trees in the ensemble voting for a SNIa classification12.

3.3 Metrics

The choice of a metric to quantify classification success goes
beyond the use of classical accuracy (equation 2) - especially
when the populations are unbalanced (figure 3). In order to
optimize information extraction, this choice must take into
account the scientific question at hand.

In the traditional SN case, the goal is to improve the
quality of the final SNIa sample for further cosmological

11 http://scikit-learn.org/
12 In this work we are concerned only with Ia ⇥ non-Ia classifi-
cation. The analysis of classification performance using other SN
types will be the subject of a subsequent investigation.

MNRAS 000, 1–18 (2018)
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Already promising results with ZTF supernova selection.


Fink will be crucial to select the SNe Ia in LSST to constrain the 
cosmic expansion & Dark Energy equation-of-state.

- With and without spectroscopic follow-up

- Key for coordinating resources

Currently building the 
interface with teams and 
follow-up facilities

Supernovae & Fink
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Identifying interesting alerts is only part of the story: we need 
coordination with other facilities, follow-up resources and existing 
networks.


• Your expertise is important to us! 

• Discussions and work with teams from: SVOM, GRANDMA, CTA, 
Integral, KM3NET, …

We need you!
• Full broker proposal (end 2020). 

• Join us! https://fink-broker.org/joining.html 

https://fink-broker.org
arXiv:2009.10185

https://fink-broker.org/joining.html

