

Carpooling to solve the cosmological simulation bottleneck

CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations (arXiv:2009.08970)

N.Chartier, B.Wandelt, Y.Akrami and F.Villaescusa-Navarro

About observations and observables

Data sets of next generation galaxy surveys: unmatched statistical power to constrain initial perturbations, cosmic structure growth and expansion history

Euclid Space Telescope, DESI, Rubin Observatory LSST, Subaru HSC & PFS, SKA, WFIRST, SPHEREx...

Motivation

We need theoretical predictions of large-scale structure (LSS) statistics.

Possible routes

- **Costly N-body codes**, unmatched for the non-linear regime of structure growth (*GADGET, GreeM*, *HACC*, PKDGRAV3...)
- Analytical computations with *LPT*, *SFT*, *EFT*...
- Approximate solvers (*surrogates*): Particle-Mesh codes (**PM**), emulators, Neural Networks...

Accuracy is traded for computational speed (especially in the non-linear regime), statistical unbiasedness not guaranteed...

Statistics of observables from N-body simulations

Fractional overdensity field; z = 0.5

• Observables (bins) are collected into a vector \boldsymbol{y} of size p

• Estimator $\hat{\boldsymbol{\mu}}$ of $\mathbb{E}[\boldsymbol{y}]$?

Random events and estimation

 y_1, \ldots, y_N are N independent random realizations sampled on seeds r_1, \ldots, r_N 1 $\sum_{n=1}^{N}$

Estimation of the mean $\mathbb{E}[\boldsymbol{y}] = \boldsymbol{\mu} \in \mathbb{R}^p$ with $\bar{\boldsymbol{y}} = \frac{1}{N} \sum_{n=1}^N \boldsymbol{y_n}$

Standard deviation of each element \bar{y}_i decreases as $\mathcal{O}(N^{-\frac{1}{2}})$

Can we get the best of both worlds? An unbiased and faster estimator

"CARPool" Method: Variance reduction with "N-body + surrogate" pairs

Numerical analysis What we are going to use

 Λ CDM cosmology, Redshift z=0.5

Y ----- N-body simulations – GADGET – are from the *Quijote Simulations* (Villaescusa-Navarro et al., 2019)

C — The cheap *surrogate* is L-PICOLA (Howlett, 2015 b), an *MPI* implementation of COLA (Tassev, 2013)

An example

Matter power spectrum 95 linearly spaced bins with :

 $k_{max} = 1.184 \ h \text{Mpc}^{-1}$ $\Delta k = 3.147 \text{e-}2 \ h \text{Mpc}^{-1}$

CARPool estimate Vs. N-body only

CARPool estimate Vs. N-body only

What is the trick?

Control Variates principle

Observables from simulations:

N-body code"cheap" surrogate
$$\boldsymbol{y} = \begin{pmatrix} y_1 & y_2 & \dots & y_p \end{pmatrix}^T$$
 $\boldsymbol{c} = \begin{pmatrix} c_1 & c_2 & \dots & c_q \end{pmatrix}^T$ $\mathbb{E} [\boldsymbol{y}] = \boldsymbol{\mu}$ $\mathbb{E} [\boldsymbol{c}] = \boldsymbol{\mu}_{\boldsymbol{c}}$ Unknown truth(Un)known "wrong" truth

• Intuition with two random scalars:

$$\sigma_{y+c}^2 = \sigma_y^2 + \sigma_c^2 + 2\text{cov}(y,c)$$

Control Variates for simulations

• Scalar case ("bin per bin"):

WE DON'T CARE ABOUT THE BIAS OF THE CHEAP ESTIMATOR

Control Variates for simulations

•

Proof in Rubinstein & Marcus (1985)

Multivariate case: $m{x}(m{eta}) = m{y}$ - $m{eta} \left(m{c} - m{\mu_c}
ight), m{eta} \in \mathbb{R}^{p imes q}$

Error box

 $\frac{\det\left(\boldsymbol{\Sigma}_{\boldsymbol{x}(\boldsymbol{\beta})\boldsymbol{x}(\boldsymbol{\beta})}\right)}{\det\left(\boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{y}}\right)} = \prod_{i=1}^{s=rank(\boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{\alpha}})}$

Squared canonical crosscorrelations

- 1) The estimate is unbiased by construction
- 2) The control matrix/coefficient gives optimal variance reduction
- 3) The more correlated the full simulation and the surrogate statistics, the better

CARPool

- In practice:
 - $oldsymbol{eta}^{\star}$ must be estimated with data
 - μ_c is unknown

Convergence Acceleration by Regression and Pooling

1 Estimate $\bar{\mu}_c$ from M fast surrogates

2 With N "simulation + surrogate" pairs, compute $\bar{x}(\hat{\beta}) = \bar{y} - \hat{\beta} (\bar{c} - \overline{\mu}_{c})$

• N-body sims only

 $\bar{\mathbf{y}}$ $\mathbf{y_n}$ n=1

Back to the first example

Matter power spectrum 95 linearly spaced bins with :

 $k_{max} = 1.184 \ h \text{Mpc}^{-1}$ $\Delta k = 3.147 \text{e-}2 \ h \text{Mpc}^{-1}$

CARPool estimate Vs. N-body only

Confidence in CARPool estimate (Pk)

Generalized variance reduction (Pk)

Standard deviation reduction (Pk)

Matter Bispectrum 73 squeezed triangle configurations

Standard deviation reduction (Bk)

Matter reduced Bispectrum 40 equilateral triangle configurations

$$k_1 = k_2 = k_3$$

Confidence in CARPool estimate (Qk)

Matter PDF

70 bins $\rho/\bar{\rho} \in [0.08, 50]$

Univariate CARPool for PDF

Conclusion and discussion

- CARPool reduces variance by factors 10 to 100, even in the nonlinear regime.
- With only 5 GADGET-III simulations, CARPool is able to compute Fourier-space two-point and three-point functions of the matter distribution at a precision comparable to 500 GADGET-III simulations.
- We have variance reduction even for the matter PDF. The remapping technique proposed by *Leclercq et al. (2013)*, that increases the correlation between LPT-evolved density fields and simulations, can improve the chosen surrogate.
- CARPool can be implemented with various "N-body + surrogate" pairs. All you need is:

 An inexpensive surrogate and statistics computation.
 Strong correlation with the costly simulations.

Thank you for your attention!

(backup slides)

Generalized variance reduction PDF

The smoothing trick

