## Carpooling to solve the cosmological simulation bottleneck

CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations (arXiv:2009.08970)
N.Chartier, B.Wandelt, Y.Akrami and F.Villaescusa-Navarro

## About observations and observables

Data sets of next generation galaxy surveys: unmatched statistical power to constrain initial perturbations, cosmic structure growth and expansion history



Euclid Space Telescope, DESI, Rubin Observatory LSST, Subaru HSC \& PFS, SKA, WFIRST, SPHEREX...

## Motivation

## We need theoretical predictions of large-scale structure (LSS) statistics.

## Possible routes

- Costly N-body codes, unmatched for the non-linear regime of structure growth (GADGET, GreeM, HACC, PKDGRAV3...)
- Analytical computations with LPT, SFT, EFT...
- Approximate solvers (surrogates): Particle-Mesh codes (PM), emulators, Neural Networks...

Accuracy is traded for computational speed (especially in the non-linear regime), statistical unbiasedness not guaranteed...

## Statistics of observables from N -body simulations

Fractional overdensity field; $\mathbf{z}=\mathbf{0 . 5}$


- Observables (bins) are collected into a vector $\boldsymbol{y}$ of size p

Estimator $\hat{\boldsymbol{\mu}}$ of $\mathbb{E}[\boldsymbol{y}]$ ?

## Random events and estimation

$\boldsymbol{y}_{\mathbf{1}}, \ldots, \boldsymbol{y}_{\boldsymbol{N}}$ are N independent random realizations sampled on seeds $\mathrm{r}_{1}, \ldots, r_{N}$
Estimation of the mean $\mathbb{E}[\boldsymbol{y}]=\boldsymbol{\mu} \in \mathbb{R}^{p}$ with $\overline{\boldsymbol{y}}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{y}_{\boldsymbol{n}}$
Standard deviation of each element $\bar{y}_{i}$ decreases as $\mathcal{O}\left(N^{-\frac{1}{2}}\right)$


# Can we get the best of both worlds? 

## An unbiased and faster estimator


"CARPool" Method: Variance reduction with "N-body + surrogate" pairs

# Numerical analysis What we are going to use 

$\Lambda$ CDM cosmology, Redshift z=0.5


N-body simulations - GADGET - are from the Quijote Simulations (Villaescusa-Navarro et al., 2019)
$C \longrightarrow$
The cheap surrogate is L-PICOLA (Howlett, 2015 b), an MPI implementation of COLA (Tassev, 2013)

## An example

## Matter power spectrum 95 linearly spaced bins with:

$$
k_{\max }=1.184 h \mathrm{Mpc}^{-1} \quad \Delta k=3.147 \mathrm{e}-2 h \mathrm{Mpc}^{-1}
$$

## CARPool estimate Vs. N-body only



## CARPool estimate Vs. N-body only



## What is the trick?

## Control Variates principle

- Observables from simulations:

- Intuition with two random scalars:

$$
\sigma_{y+c}^{2}=\sigma_{y}^{2}+\sigma_{c}^{2}+2 \operatorname{cov}(y, c)
$$

## Control Variates for simulations

- Scalar case ("bin per bin"):

$$
\begin{aligned}
& \mathrm{x}(\beta)=y-\beta\left(c-\mu_{c}\right), \beta \in \mathbb{R} \\
& \mathbb{E}[x(\beta)]=\mathbb{E}[y]=\mu \\
& \beta^{\star}=\operatorname{argmin}_{\beta \in \mathbb{R}}\left[\sigma_{x(\beta)}^{2}\right]=\operatorname{cov}(y, c) / \sigma_{c}^{2} \rightarrow \text { Optimality } \\
& \frac{\sigma_{x\left(\beta^{\star}\right)}^{2}}{\sigma_{y}^{2}}=1-\rho_{y c}^{2}
\end{aligned}
$$

## WE DON'T CARE ABOUT THE BIAS OF THE CHEAP ESTIMATOR

## Control Variates for simulations

- Multivariate case: $\boldsymbol{x}(\boldsymbol{\beta})=\boldsymbol{y}-\boldsymbol{\beta}\left(\boldsymbol{c}-\boldsymbol{\mu}_{c}\right), \boldsymbol{\beta} \in \mathbb{R}^{p \times q}$


Proof in Rubinstein \& Marcus (1985)

$$
\beta^{\star}=\Sigma_{y c} \Sigma_{c c}^{-1}
$$

Error box
(dimension p)


$$
\frac{\operatorname{det}\left(\boldsymbol{\Sigma}_{\boldsymbol{x}(\boldsymbol{\beta}) \boldsymbol{x}(\boldsymbol{\beta}))}^{\operatorname{det}\left(\boldsymbol{\Sigma}_{\boldsymbol{y} \boldsymbol{y}}\right)}=\prod_{n=1}^{s=r a n k\left(\boldsymbol{\Sigma}_{\boldsymbol{y c}}\right)}\left(1-\lambda_{n}^{2}\right) .\right.}{\prod_{n}}\left(1-{ }^{s}\right)
$$

1) The estimate is unbiased by construction
2) The control matrix/coefficient gives optimal variance reduction
3) The more correlated the full simulation and the surrogate

## CARPool

- In practice:
$\boldsymbol{\beta}^{\star}$ must be estimated with data
$\boldsymbol{\mu}_{\boldsymbol{c}}$ is unknown


Convergence Acceleration by Regression and Pooling

1 Estimate $\overline{\boldsymbol{\mu}}_{\boldsymbol{c}}$ from M fast surrogates

2 With N "simulation + surrogate" pairs, compute $\overline{\boldsymbol{x}}(\hat{\boldsymbol{\beta}})=\overline{\boldsymbol{y}}-\hat{\boldsymbol{\beta}}\left(\overline{\boldsymbol{c}}-\overline{\boldsymbol{\mu}}_{\boldsymbol{c}}\right)$

- N-body sims only

$$
\overline{\mathbf{y}}=\frac{1}{L} \sum_{n=1}^{L} \mathbf{y}_{\mathbf{n}}
$$

- Multivariate CARPool

$$
\beta^{\star}=\Sigma_{y c} \Sigma_{c c}^{\dagger}
$$

Moore-Penrose pseudo-inverse

$$
\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{\boldsymbol{n}}(\hat{\boldsymbol{\beta}})=\overline{\boldsymbol{x}}(\hat{\boldsymbol{\beta}})
$$


(hopefully)

- Univariate CARPool

$$
\begin{aligned}
& \text { VS. }\left(\frac{\operatorname{cov}\left(y_{1}, c_{1}\right)}{\sigma_{c_{1}}^{2}}\right. \\
& \frac{\operatorname{cov}\left(y_{2}, c_{2}\right)}{\sigma_{c_{2}}^{2}}
\end{aligned}
$$

## Back to the first example

 Matter power spectrum 95 linearly spaced bins with :$$
k_{\max }=1.184 h \mathrm{Mpc}^{-1} \quad \Delta k=3.147 \mathrm{e}-2 h \mathrm{Mpc}^{-1}
$$

## CARPool estimate Vs. N-body only



## Confidence in CARPool estimate (Pk)



## Generalized variance reduction (Pk)



## Standard deviation reduction (Pk)



## Matter Bispectrum 73 squeezed triangle configurations

$$
k_{1}=k_{2}
$$

Function of $\frac{k_{3}}{k_{1}}$

## Standard deviation reduction (Bk)



# Matter reduced Bispectrum 40 equilateral triangle configurations 

$$
k_{1}=k_{2}=k_{3}
$$

## Confidence in CARPool estimate (Qk)



## Matter PDF

70 bins $\rho / \bar{\rho} \in[0.08,50]$

## Univariate CARPool for PDF




## Conclusion and discussion

- CARPool reduces variance by factors 10 to 100 , even in the nonlinear regime.
- With only 5 GADGET-III simulations, CARPool is able to compute Fourier-space two-point and three-point functions of the matter distribution at a precision comparable to 500 GADGET-III simulations.
- We have variance reduction even for the matter PDF. The remapping technique proposed by Leclercq et al. (2013), that increases the correlation between LPT-evolved density fields and simulations, can improve the chosen surrogate.
- CARPool can be implemented with various " N -body + surrogate" pairs. All you need is:

1) An inexpensive surrogate and statistics computation.
2) Strong correlation with the costly simulations.

## Thank you for your attention!

## (backup slides)

## Generalized variance reduction PDF



## The smoothing trick


$* \boldsymbol{w}_{\text {flat }}$



