

Local PNG with Euclid | Physical Principles

Outline

- Physical Principle
- Euclid NISP Instrument
- Line-Misidentification
- Impact on fNL
- Conclusion and Outlook

-The late time universe is also Non-Gaussian (NG) due to non-linearities (NL) BUT at large scales the NG from NL is quite insignificant

-Highly biased tracers are going to capture the PNG signal through a scale dependent bias on the Power spectrum as:

$$b(z; b_0) \to \tilde{b}(k, z) \equiv b(z; b_0) + \tilde{\Delta}b(k, z)$$

$$\tilde{\Delta}b(k,z) \propto f_{\rm NL}^{\rm loc}k^{-2}$$

[A. Slosar et al 2008 Ansatz model]

Local PNG with Euclid | Physical Principles

• Objectives:

- Dark Matter
 (Weak Lensing)
- Dark Energy (Galaxy Clustering)
- Large Scale Structure Science

Mainly Update

Local PNG with Euclid | Euclid NISP Instrument

Systematics

Line-Misidentification

Interloping effect

Suppose line-Identification on Flux

Pullen, A. R., C. M. Hirata, O. Doré, et al. 2015 Wong, K., A. Pullen, and S. Ho 2016

P. Ntelis

A.J.Hawken, S. Avila, S.Camera, S.Escoffier, E.Sefussatti, A.Pourtsidou

Systematics

Line-Misidentification

Interloping effect

Suppose line-Identification on Flux

Line misidentification: confusion of Hα with O_{IIIb}

λ (A.U.)

Measurement

Due to noisy instrument noisy flux measurement

Pullen, A. R., C. M. Hirata, O. Doré, et al. 2015 Wong, K., A. Pullen, and S. Ho 2016

P. Ntelis

Systematics

Line-Misidentification

Interloping effect

Suppose line-Identification on Flux

Line misidentification: confusion of Hα with O_{IIIb}

Due to noisy instrument

S. 9

noisy flux measurement

REALITY

Pullen, A. R., C. M. Hirata, O. Doré, et al. 2015 Wong, K., A. Pullen, and S. Ho 2016

P. Ntelis

A Contaminated galaxy sample from interlopers will have additional wavelengths:

$$\lambda_{i \to T_L^i} = \frac{1 + z_i}{1 + z_{i \to T_L^i}} \lambda_i$$

$$\vec{X}_{obs} = \left\{ \gamma_{||} Y_{||}, \gamma_{\perp} \vec{Y}_{\perp} \right\}$$

Observed at a new position:

Affecting Power Spectrum as:

Normalisation shift $P_{obs}(k,\mu) = \left(1 - \sum_{i=1}^{N_{\text{inter}}} f_i\right)^2 P_{T_L}(k,\mu,z_{\text{T}_L};b(z_{\text{T}_L})) + \sum_{i=1}^{N_{\text{inter}}} f_i^2 \gamma_{\perp,i}^2 \gamma_{\parallel,i} P_i(z_i,q(k,\mu),\mu_q(\mu);b(z_i))$

A Contaminated galaxy sample from interlopers will have wavelength:

$$\lambda_i = \frac{1 + z_{T_L}}{1 + z_i} \lambda_{T_L}$$

$$\vec{X}_{obs} = \left\{ \gamma_{||} Y_{||}, \gamma_{\perp} \vec{Y}_{\perp} \right\}$$

Observed at a new position:

Introducing PNG we have:

$$P_{obs}^{\rm TH}(k,\mu,z_{T_L},z_i;f_i,f_{\rm NL}) = \left(1 - \sum_{i=1}^{N_{inter}} f_i\right)^2 \left(b(z_{T_L}) + f_{\rm NL}C_{ng}(z_{\rm T_L},k)\left[b(z_{\rm T_L}) - p\right] + f(z_{\rm T_L})\mu^2\right)^2 P_m(z_{T_L},k) \\ + \sum_{i=1}^{N_{inter}} f_i^2 \gamma_{\perp,i}^2 \gamma_{\parallel,i}\left(b(z_i) + f_{\rm NL}C_{ng}(z,k)\left[b(z_i) - p\right] + f(z_i)\mu_q^2(\mu)\right)^2 P_m(z_i,q(k,\mu))$$

P. Ntelis

P. Ntelis

Local PNG with Euclid | Impact on fNL

Model Knows About Interloping

S_{III} line impacts a lot fNL

10-20% Interloping fraction

=>

3-16% PNG Uncertainty Increase

Fig. 5. Forecast of primordial non-Gaussianity uncertainty at 68% C.L. as a function of different interloping rate normalised. The scenario of the uncertainty is given by the $\chi_3^2(b_{H_\alpha}, f_{\rm NL}, b_i, f_i | \sigma_{b_{0i}} = 0.1, \sigma_{f_i} = 0.01)$, where we consider only the interloping from interloping from $O_{\rm IIIb}$ and $S_{\rm III}$ colourcoded (blue and orange respectively) individually with dotted continues lines. We present some approximate proportional laws of this uncertainty increase. [See sections 5, 6]

Local PNG with Euclid | Impact on fNL

P. Ntelis

Local PNG with Euclid

Conclusions:

- Great Science with Euclid
- σ_{fNL} ~= 10 from P_{0,2}(k) (Power Spectrum Monopole+Quadrapole)
- Line-Misidentification bottleneck for future slitless spectroscopic surveys
- But modelling provide precise helpful insights
 - Contaminant O_{IIIb} , S_{III} controlled uncertainty increase
 - Solvable with Euclid Deep Field

Outlook:

- Characterisation of Other Systematics
- Survey Simulations Tests

Thank You for your Attention!

Local PNG with Euclid

Back up

Near Infrared Spectrometer and Photometer (NISP) Instrument

P. Ntelis

